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Abstract. Partially motivated by the study of I. Binder, N. Makarov, and S. Smirnov
[BMS03] on dimension spectra of polynomial Cantor sets, we initiate the investigation
on some general harmonic measures, inspired by Sullivan’s dictionary, for distance-
expanding dynamical systems. Let f : X → X be an open distance-expanding map on
a compact metric space (X, ρ). A Gromov hyperbolic tile graph Γ associated to the
dynamical system (X, f) is constructed following the ideas from M. Bonk, D. Meyer
[BM17] and P. Haïssinsky, K. M. Pilgrim [HP09]. We consider a class of one-sided
random walks associated with (X, f) on Γ. They induce a Martin boundary of the
tile graph, which may be different from the hyperbolic boundary. We show that the
Martin boundary of such a random walk admits a surjection to X. We provide a
class of examples to show that the surjection may not be a homeomorphism. Such
random walks also induce measures on X called harmonic measures. When ρ is a
visual metric, we establish an equality between the fractal dimension of the harmonic
measure and the asymptotic quantities of the random walk.
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1. Introduction

The use of measure-theoretic methods is standard in the study of dynamical systems
nowadays. Understanding various properties of the invariant measures associated with
the dynamical systems has been a central part of the ergodic theory.

During the 20th century, complex dynamics and geometric group theory flourished
with the collaborative efforts of numerous mathematicians. In the 1970s, D. P. Sul-
livan identified striking parallels between the theory of the action of Kleinian groups
and the iterations of rational maps on the Riemann sphere. Notably, the analogy be-
tween expanding rational maps and hyperbolic Kleinian group actions, including fractal
properties, is involved in Sullivan’s dictionary. As topological generalizations of these
concepts, expanding dynamics and Gromov hyperbolic groups also share similar prop-
erties. A hyperbolic graph associated with a dynamical system is constructed, whose
Gromov boundary is identified with the phase space of the dynamical system, as an
analog of the Cayley graph for a hyperbolic group. The construction of the hyperbolic
graph for Thurston maps is due to M. Bonk and D. Meyer in [BM17], where they call
it the tile graph. Independently, P. Haïssinsky and K. M. Pilgrim also developed a
similar graph in the context of coarse expanding conformal dynamics in [HP09]. We
investigate different boundaries of similar graphs associated with distance-expanding
dynamical systems.

In the 1960s, H. Kasten studied the spectrum of random walks on countable groups
and found that the property called amenability can be determined by the random
walk, which reflects features of the group itself. From then on, random walk meth-
ods gradually became powerful tools in characterizing various groups. One of the key
observations is that the Markov operator is a discrete analog of the Laplacian opera-
tor. Hence, many concepts, including the harmonic functions, the Poisson boundary,
and the Harnack principle, can be studied in the theory of random walks on count-
able groups. Mathematicians, including H. Furstenberg, E. B. Dynkin, F. Ledrappier,
V. A. Kaimanovich, etc., have studied various properties of these potential-theoretic ob-
jects. For hyperbolic groups, the problem of finding the Poisson boundary explicitly is
easier. There is another topological boundary associated with the random walk, which
is called the Martin boundary. The Poisson boundary can be identified with the Martin
boundary equipped with the representing measure of the constant function, that is, the
harmonic measure on it; see [Kai96] for details. A. Ancona proved Ancona’s inequality
[Anc87, Theorem 5], which can be used to show that, under some mild conditions,
the Martin boundary of the random walk is isomorphic to the hyperbolic boundary
of the group. Hence, for hyperbolic groups, the study of the Poisson boundaries is
reduced to the study of the harmonic measures on the hyperbolic boundary. Several
asymptotic constants, including the asymptotic entropy h and the asymptotic drift
l, are crucial in understanding the Poisson boundary of random walks on hyperbolic
groups. One of the significant results is the so-called fundamental inequality h ⩽ lv
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proved by Y. Guivarc’h [Gui80] about the entropy, the drift of the random walk, and
the logarithmic growth rate v of the group. In the 2000s, S. Blachère, P. Haïssinsky,
and P. Mathieu in [BHM08] and [BHM11] introduced Green metrics for random walks
on hyperbolic groups, which are quasi-isometric to the word metric. Using Green met-
rics, they showed that the harmonic measure is equivalent to the conformal measure
of the group if and only if the equality in the fundamental inequality holds. They also
provided a formula dimν =

h

al
to calculate the dimension of harmonic measures on the

hyperbolic boundary endowed with an a-visual metric.
In the theory of complex analysis and polynomial dynamics, there is also a notion

of harmonic measure on the Julia set Jf of a polynomial f with degree d ⩾ 2. It is
defined, for example, as the hitting distribution of a Brownian motion in the complement
Ωf = C\Kf of the filled Julia set. It was first introduced by H. Brolin in [Bro65] where
the equidistribution of preimages of the harmonic measure was proved. M. Yu. Lyubich
proved the equidistribution of preimages of the measure of maximal entropy in [Lju83],
which shows that the harmonic measure and the measure of maximal entropy coincide.
This measure is also called the Brolin–Lyubich measure. The Hausdorff dimension of
the Brolin–Lyubich measure is proved to be equal to 1 by A. Manning in [Man84]. For
a polynomial with disconnected Julia set, the tile graph Γ is a tree so that the harmonic
measure on ΩF can be reconstructed as the harmonic measure of a random walk on Γ;
see [Eme06]. For a deep investigation of the universal dimension spectra of polynomial
Canter sets, see the work of I. Binder, N. Makarov, and S. Smirnov [BMS03].

This article mainly concentrates on discrete random walks on the hyperbolic graphs
associated with expanding dynamical systems, aiming to define a class of harmonic
measures for dynamical systems as an analog to the harmonic measures for infinite
groups. Moreover, some basic properties, including a dimension formula for the newly
defined harmonic measure, are proved in this article. We will also show that the Martin
boundary maps surjectively to the phase space and the surjection may possibly not be
a homeomorphism.

More precisely, let (X, ρ) be a compact metric space, and f : X → X be an open
transitive distance-expanding map on X; see Subsection 2.1. Associated with a Markov
partition α = {A0, . . . , AN}, we can define a hyperbolic graph Γ called the tile graph.
In general, the vertex set of the tile graph consists of words u = u1u2 . . . un with
characters u1, . . . , un ∈ {0, . . . , N}, such that for each i ∈ {0, . . . , n− 1}, Aui+1

⊆ fAui
.

Each vertex u = u1u2 . . . un corresponds to a tile

Au := Au1 ∩ f−1Au2 ∩ · · · ∩ f−(n−1)Aun .

Two vertices u, v are connected by an edge if and only if their levels differ at most by
1 and Au ∩ Av 6= ∅. The empty word o := ∅ corresponds to the largest tile X.

For a detailed construction of the tile graph, see Subsection 2.3.
The assumption on the uniform expansion of f in Subsection 2.1 implies that f is

a local homeomorphism. This property is usually used in this paper in the form of
Lemma 3.4, which indicates that the natural shift map σ on the tile graph restricts to
an isomorphism between subgraphs away from the root.
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Let M(Γ) be the space of probability measures on Γ. Given a map P : Γ → M(Γ),
the random walk {Zn} associated to P with starting point u is defined as follows. Put
Z0 = u and let Zn+1 follow the law of distribution P (Zn) for all n ∈ Z⩾0, inductively.
Then {Zn} is a random walk on the tile graph Γ. Such a map P is called a transition
probability on Γ. Since Γ is countable, P induces a map P̂ : Γ × Γ → [0, 1] given by
(x, y) 7→ P (x)({y}).

In this article, we focus on a particular family of random walks on the tile graph Γ,
which is related to the dynamics (X, f).

We say that P satisfies the Assumptions in Section 1 if P satisfies the following
assumptions.

Assumptions:

(A) There is a constant R > 0 such that for each x ∈ Γ, we have suppP (x) ⊆
B(x,R), where B(x,R) denotes the ball in Γ centered at x with radius R.

(B) For all x, y ∈ Γ, if P̂ (x, y) > 0, then |y| > |x|.
(C) For all x, y ∈ Γ, if |y| = |x|+ 1 and d(x, y) = 1, then P̂ (x, y) > 0.
(D) P commutes with the shift σ, i.e.,

P (σu) = (σ∗P (u)) : A 7→
∑
v∈A

∑
σw=v

P̂ (u,w)

except for u = o.
For the definition of the shift map σ, see Subsection 2.3.
Generally speaking, Assumption (A) is a “locality” assumption for the transition

probability. It ensures that each step of the random walk does not move too far away
from its current position. This assumption is crucial in determining the Martin bound-
ary of the tile graph just as determining the Martin boundary of hyperbolic groups in
[Anc87]. Assumption (B) makes sure that the random walk always increases the level of
a vertex. We make this assumption because by this we can establish the subadditivity
of the logarithm of the Green function. Hence, the Green drift lG in Lemma 5.1 is well-
defined. Assumption (C) implies that the random walk resembles a diffusion process.
Without this assumption, the topology of the phase space would not affect the random
walk, so the identification between the Martin boundary and the phase space becomes
impossible. Assumption (D) relates the random walk with the dynamical system f so
that it is possible to attach some ergodic properties to it. It is essential in the proof of
Theorem 5.4.

In the theory of random walks on hyperbolic graphs, under some mild assumptions of
irreducibility and locality, the Martin boundary coincides with the hyperbolic boundary,
see [Woe00, Section 27] and [Kai97, Theorem 3.1]. However, this result cannot be
applied directly to our setting. Although the tile graph is hyperbolic, Assumption (B)
makes the random walk reducible. Hence, the Harnack inequality about the harmonic
functions fails, and thus, Ancona’s inequality fails as well. To deal with such an obstacle,
we introduce and establish variants of the Harnack inequality and Ancona’s inequality
in Lemmas 5.2 and 3.5, respectively.
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The following theorems are the main results of this article. The first theorem relates
points on the Martin boundary with points on the Gromov boundary.

Theorem 1.1. Suppose that f : X → X is an open transitive distance-expanding map
on a compact metric space (X, ρ), α is a sufficiently fine Markov partition, and (Γ, P )
is random walk on the tile graph Γ = Γ(f, α) with P satisfying the Assumptions in
Section 1. Then there is a natural surjection Φ from the Martin boundary ∂MΓ of
(Γ, P ) to X.

By natural surjection, we mean that the identity map on Γ extends continuously to
a surjection Φ from the Martin boundary to the Gromov boundary. Note that the
Gromov boundary is naturally homeomorphic to X due to Theorem 2.3.

One may ask whether the natural surjection in Theorem 1.1 is a homeomorphism or
not. Unfortunately, the answer is no in general. We provide a family of counterexamples
of random walks on the tile graph of the doubling map on the circle in Section 4.

Theorem 1.2. Under the notations and hypotheses in Theorem 1.1, there is a choice
of (X, f), α, and Γ, such that for some choices of P , the surjection Φ in Theorem 1.1
is a homeomorphism, while for other choices of P , Φ is not a homeomorphism.

In the study of the Martin boundary and the harmonic measures for a random walk,
one of the crucial concepts is the Green function

(1.1) G(x, y) := Ex

(+∞∑
n=0

1y(Zn)

)
=

+∞∑
n=0

Px(Zn = y) =
+∞∑
n=0

P̂ (n)(x, y),

for x, y ∈ Γ, where Ex(f) denotes the expectation of a random variable f of the random
walk {Zn} with Z0 = x, Px(A) denotes the probability of an event A of the random
walk {Zn} with Z0 = x, and for each integer n > 1,

P̂ (n)(x, y) :=
∑

x1,...,xn−1∈Γ

P̂ (x, x1)P̂ (x1, x2) · · · P̂ (xn−1, y)

is the probability of Zn = y when Z0 = x. Let
(1.2) F (x, y) := Px(∃n ∈ Z⩾0, Zn = y)

be the probability that the random walk started at x ever hits y. If Assumption (B)
holds, then for each x ∈ Γ, G(x, x) = 1. Since for each x, y ∈ Γ, G(x, x)F (x, y) =
G(x, y), the functions F and G coincide. Hence, except for Section 4, we use both
notations for the same function.

If {Zn} Po-a.s. converges to a point Z∞ in some boundary ∂Γ, then we can define the
harmonic measure on ∂Γ by

ν∂Γ(A) := Po(Z∞ ∈ A), for each Borel measurable subset A ⊆ ∂Γ.

It is the escape distribution of the random walk {Zn} to such a boundary. In particular,
as long as the random walk is transient, {Zn} Po-a.s. converges to a point Z∞ ∈ ∂MΓ
in the Martin boundary. Hence, on the Martin boundary, the harmonic measure ν∂MΓ

can be defined. As an immediate consequence of Theorem 1.1, the harmonic measure
can also be defined on the phase space X by ν := Φ∗ν

∂MΓ.
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To quantitatively study the fractal property of a measure, one of the effective ways
is to calculate its fractal dimensions. For a metric space (X, ρ), we recall that the
Hausdorff dimension of X is defined by

dimH(X) := inf
{
δ > 0 : lim

r→0
inf

{Ui}i∈Z>0

∑
i∈Z>0

(diamUi)
δ = 0

}
,

where the second infimum is taken over all countable covers {Ui} of X such that for
each i ∈ Z>0, diamUi < r. The packing dimension of X is defined by

dimP (X) := inf
{
δ > 0 : inf

{Ai}i∈Z>0

∑
i∈Z>0

(
lim
r→0

sup
{(xi,j ,ri,j)}j∈Z>0

∑
j∈Z>0

(ri,j)
δ
)
= 0

}
,

where the second infimum is taken over all covers {Ai} of X, and the supremum is taken
over all countable pairs {(xi,j, ri,j)}j∈Z>0 with xi,j ∈ Ai, ri,j ∈ (0, r], and ρ(xi,j, xi,k) ⩾
ri,j + ri,k for each pair of distinct j, k ∈ Z>0.

We say that a measure µ on X has Hausdorff dimension δ if
inf{dimH(A) : A ⊆ X,µ(A) > 0} = inf{dimH(A) : A ⊆ X,µ(A) = 1} = δ.

We say that a measure µ on X has packing dimension δ if
inf{dimP (A) : A ⊆ X,µ(A) > 0} = inf{dimP (A) : A ⊆ X,µ(A) = 1} = δ.

For a detailed introduction to fractal dimensions, we refer the reader to see, for
example, [PU10, Chapter 8].

To compute the dimension of the harmonic measure ν, we need several asymp-
totic quantities associated with the random walk. Let lG be the almost sure limit
of −n−1 log(G(Z0, Zn)), l be the almost sure limit of |Zn|/n. We show in Section 5 that
both of them exist, and we have the following theorem about the fractal dimension of
the harmonic measure.

Theorem 1.3. Under the notations and hypotheses in Theorem 1.1, if X is equipped
with an a-visual metric ρ for a sufficiently small constant a > 0, then the packing
dimension of the harmonic measure ν on X is equal to lG

al
.

Note that it is easy to see that the asymptotic entropy h is no less than the Green
drift lG. More precisely,

h := lim
n→+∞

E
(
− log P̂ (n)(o, Zn)

)
⩾ lim

n→+∞
E(− logF (o, Zn)) =: lG.

Since the Hausdorff dimension of ν is not greater than the packing dimension of ν, we
have the following corollary of Theorem 1.3.

Corollary 1.4. Under the notations and the hypotheses in Theorem 1.1, if X is equipped
with an a-visual metric ρ for a sufficiently small constant a > 0, then the Hausdorff
dimension of the harmonic measure is not greater than h

al
.

The formula of the Hausdorff dimension of the harmonic measure of hyperbolic groups
was established by S. Blachère, P. Haïssinsky, and P. Mathieu in [BHM11]. This dimen-
sion formula is closely related to the dimension formula that under some assumption,
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the Hausdorff dimension of an ergodic measure ν on X is equal to the entropy divided
by the Lyapunov exponent, i.e., dimν = hν(f)/χν(f).

Finally, we establish the quasi-invariance of the harmonic measure.

Theorem 1.5. Under the notations and hypotheses in Theorem 1.1, the harmonic
measure ν on X is quasi-invariant under f , more precisely, ν and f∗ν are absolutely
continuous to each other with both of the two Radon–Nikodym derivatives bounded.

We will now give a brief description of the structure of this paper.
In Section 2, we recall the background of uniformly expanding dynamical systems

on a compact metric space and Markov partitions associated with it. We also recall
some background for random walks on discrete infinite graphs, the Martin boundary,
and the harmonic measures associated with it. Finally, we build a graph Γ called the
tile graph from a fixed Markov partition α on X. The random walk will take place on
this graph. This graph is equipped with a shift map σ induced by f , and the tile graph
shares similar properties with the Cayley graph in the group theory.

In Section 3, we study basic properties of σ-invariant random walks with the transi-
tion probability P satisfying Assumptions in Section 1. Some lemmas about the shadow
will also be proved in this section.

In Section 4, we give a proof of Theorem 1.1. Then we provide a class of examples
to show that the surjection in Theorem 1.1 may not be a homeomorphism, establishing
Theorem 1.2.

In Section 5, we study the ergodic properties of the random process and justify
the definition of the asymptotic quantities in the dimension formula of the harmonic
measure in Theorem 1.3. Then based on the estimation of the Martin kernels, we give
a proof of Theorem 1.3.

Finally, in Section 6, we study some basic dynamical properties of the harmonic
measure and establish Theorem 1.5.

In the appendix, we provide proofs of Theorem 2.3 and Propositions 2.4 and 2.5.
They are properties of the tile graph and the visual metrics that are used in this article.

Acknowledgments. The authors thank Mario Bonk, Manfred Denker, Wenyuan Yang,
Yiwei Zhang, and Tianyi Zheng for interesting discussions.

2. Preliminaries

In this section, we state our settings of distance-expanding dynamical systems (X, f)
and review the notion of Markov partitions. Then we review the construction of the
Martin boundary and the harmonic measure.

In this article, if two functions f and g are positive, then f ≲ g means that there is
a universal constant C > 0 such that f ⩽ Cg. We write f � g if both f ≲ g and f ≳ g
hold.

2.1. Uniformly expanding maps and Markov partitions. In this subsection, we
review the definition and some known properties of an open, transitive, and distance-
expanding map. Then we recall the notion of Markov partitions and symbolic dynamical
systems induced by a distance-expanding map.
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Let (X, ρ) be a compact metric space. We denote by C(X) the space of continuous
functions on X, and by M(X) = C(X)∗ the space of Borel probability measures on X.
For a point x ∈ X and subsets A,B ⊆ X, we denote

ρ(x,A) := inf{ρ(x, y) : y ∈ A} and
ρ(A,B) := inf{ρ(x, y) : x ∈ A, y ∈ B}.

A ball of radius r ∈ (0,+∞) centered at x ∈ X is denoted by
B(x, r) = {y ∈ X : ρ(x, y) < r}.

The r-neighborhood of a subset A ⊆ X is denoted by
(2.1) B(A, r) = {x ∈ X : ρ(x,A) < r}.

We assume that a map f : X → X satisfies the following assumptions.
Assumptions:

(i) f : X → X is continuous on a compact metric space (X, ρ) and is topologically
transitive, i.e., for each pair of nonempty open sets U and V , there exists a
number n ∈ Z>0 such that fnU ∩ V 6= ∅.

(ii) f is open, i.e., the image of an open set is open.
(iii) f is distance-expanding, i.e., there exist constants ξ > 0 and λ > 1 such

that for each pair of points x, y ∈ X with ρ(x, y) ⩽ ξ, we have ρ(fx, fy) ⩾
λρ(x, y). By Assumption (ii), f is a local homeomorphism. So, for the sake
of convenience, we assume, moreover, that f |B(x,ξ) is a homeomorphism to its
image.

We also denote by M(X, f) the subspace of f -invariant measures on X in M(X).
In the sequel, we say that a dynamical system (X, f) satisfies the Assumptions in

Subsection 2.1 if f satisfies (i), (ii), and (iii).
Then we briefly review the notion of Markov partitions and subshifts of finite type.

With the help of a Markov partition, we can obtain a subshift of finite type for an open
distance-expanding map.

Let S be a finite nonempty set, and M : S × S → {0, 1} be a matrix with entries
being either 0 or 1. We denote the set of admissible sequences defined by M by

Σ+
M :=

{
{xi}i∈Z⩾0

: xi ∈ S, M(xi, xi+1) = 1, for each i ∈ Z⩾0

}
.

The topology on Σ+
M is induced by the product topology, which is compact by the

Tychonoff theorem since S is a finite set.
The left-shift operator σM : Σ+

M → Σ+
M is given by

σM

(
{xi}i∈Z⩾0

)
= {xi+1}i∈Z⩾0

for each {xi}i∈Z⩾0
∈ Σ+

M .

The pair (Σ+
M , σM) is called the one-sided subshift of finite type defined by M . The set

S is called the set of states, and the matrix M : S × S → {0, 1} is called the transition
matrix.

Fixing a one-sided subshift of finite type (Σ+
M , σM), we denote by

[y0, y1, . . . , yn] :=
{
{xi}i∈Z⩾0

∈ Σ+
M : xi = yi, 0 ⩽ i ⩽ n

}
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the cylinders of the (n + 1)-tuple (y0, . . . , yn) ∈ Mn+1 satisfying Myi−1yi = 1, for each
integer 1 ⩽ i ⩽ n.

Let X, Y be topological spaces, and f : X → X, g : Y → Y be two continuous maps.
We say that (X, f) is topologically semi-conjugate to (Y, g) if there exists a continuous
surjection h : X → Y such that h ◦ f = g ◦ h. If, furthermore, h is a homeomorphism,
then we say that (X, f) is topologically conjugate to (Y, g).

For distance-expanding dynamical systems, Markov partitions associate the original
dynamical systems with symbolic dynamics. For a more detailed discussion about
results on Markov partitions related to our context, see for example, [PU10, Section
4.5].

A finite cover α = {A1, . . . , AN} is called a Markov partition if the following condi-
tions hold:

(a) Ai = intAi, for all i ∈ {1, . . . , N};
(b) intAi ∩ intAj = ∅ for all i, j ∈ {1, . . . , N} with i 6= j;
(c) f(intAi) ∩ intAj 6= ∅ implies intAj ⊆ f(intAi) for all i, j ∈ {1, . . . , N}.

We denote the mesh of the Markov partition α by meshα := max{diamA : A ∈ α}.
For open distance-expanding maps, there exist Markov partitions of arbitrarily small
meshes (see for example, [PU10, Theorem 4.5.2]). Hence, we can attach to each of
these maps a Markov partition with meshα < ξ, where ξ > 0 is the constant in the
Assumptions in Subsection 2.1. Such a Markov partition α = {A1, . . . , Ad} gives rise
to a coding of f : X → X. More precisely, let M be a N × N matrix with entries 0
or 1 depending on whether f(intAi) ∩ intAj is empty or not. Then there is a one-
sided subshift of finite type (Σ+

M , σM) together with a topological semi-conjugation
π : Σ+

M → X given by

u = {ui}i∈Z⩾0
7→ x ∈ Au =

+∞⋂
i=0

f−iAui
.

2.2. Markov chains on graphs, Martin boundaries, and harmonic measures.
In this subsection, we review some concepts related to discrete random walks on a
countable graph.

Recall that a graph is a set V for which an edge set E has been specified, where an
edge set E on V is a collection consisting of subsets of V of cardinality 2, called edges.
Properly speaking, a graph is an ordered pair (V,E) consisting of a set V and an edge
set E on V , but we usually omit specific mention of E if no confusion arises. Points in
V are also called vertices.

A subgraph Γ′ ⊆ Γ is a subset of the set Γ equipped with the edge set E|Γ′ :=
{{u, v} ∈ E : u, v ∈ V ′}. Two graphs (Γ1, E1) and (Γ2, E2) are isomorphic if and only
if there is a bijection f : Γ1 → Γ2 such that E2 = {{f(u), f(v)} : {u, v} ∈ E1}.

Let Γ be a graph with basepoint o and Ω := ΓZ⩾0 be the sample space. A transi-
tion probability on Γ is a function P : Γ → M(Γ). Recall that we denote P̂ (x, y) =
P (x)({y}). A Markov chain on Γ is defined as a series of random variables

Zn : Ω → Γ, n ∈ Z⩾0,
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with
P(Zn+1 = u | σ(Z0, . . . , Zn)) = P̂ (Zn, u),

where σ(Z0, . . . , Zn) denotes the σ-field generated by Z0, . . . , Zn. The random walk
usually starts from the basepoint o ∈ Γ, in which case we define Z0 := o.

By Kolmogorov’s extension theorem, Ω admits a probability measure generated by
the transition probability P and the initial distribution p. If p is equal to δu, the Dirac
measure at u ∈ Γ, then we denote the probability measure on Ω by Pu. In particular,
for the case that u = o is the base point of Γ, we write P = Po if we do not emphasize
the choice of u. The sample space (Ω,P, σ(Z0, Z1, . . . )) is then a probability measure
space.

Suppose that each state w ∈ Γ in the Markov chain is transient, i.e.,

Pw(min{n ∈ Z>0 : Zn = w} < +∞) < 1.

Then the Markov process “escapes to infinity” almost surely.
To formalize the intuition, we define the Martin boundaries and harmonic measures

below.
We now recall the notion of the Martin boundary ∂MΓ. In general, it is a compact-

ification of Γ at infinite, on which Borel measures represent all P -harmonic functions
on the graph. The harmonic measure is defined as the escape distribution on some
boundary of a Markov chain from one point in the graph. One can refer to [Woe00,
Section 24] for more details.

To be precise, recall that the Green function G : Γ×Γ → R of a Markov chain (Γ, P )

is defined in (1.1) as the expectation of the total number Nv :=
+∞∑
n=0

1v(Zn) of visits to

v from u. Hence, we have a recursive formula of G as follows:

(2.2) G(u, v) =
∑
w∈Γ

P̂ (u,w)G(w, v) + 1v(u) =
∑
w∈Γ

G(u,w)P̂ (w, v) + 1u(v).

The P -Laplacian ∆Pf of a function f : Γ → R is defined by

∆Pf(u) := −f(u) +
∑
v∈Γ

P̂ (u, v)f(v)

for each u ∈ Γ. A function f is P -harmonic if ∆Pf = 0. By induction, for each
harmonic function f and each n ∈ Z>0, we have

(2.3)
∑
v∈Γ

P̂ (n)(u, v)f(v) = f(u).

Hence, by (2.2), the P -Laplacian of the Green function is ∆PG(·, v) = 1v. If there is
no confusion about the choice of P , we may say that f is harmonic if f is P -harmonic.

Let F (u, v) := Pu(v ∈ {Z0, Z1, . . . }) be the probability of visiting v ∈ Γ from u ∈ Γ.
Then it is straightforward to show that for all u, v ∈ Γ, F (u, v) ⩽ 1 and G(u, v) =
F (u, v)G(v, v). This implies that F is a normalization of the Green function G with
F (u, u) = 1. Since each vertex u ∈ Γ is transient, by the definition of G, we can



GENERAL HARMONIC MEASURES 11

calculate that

G(u, u) =
1

1− Pu(min{n ∈ Z>0 : Zn = w} < +∞)
< +∞.

Hence, G(u, v) ⩽ G(v, v) is finite for all u, v ∈ Γ.
Now we formulate the definition of the Martin boundary of a Markov chain. First,

we construct a function K(·, v) : Γ → R for each v ∈ Γ taking value 1 at o, called the
Martin kernel, by

(2.4) K(u, v) :=
G(u, v)

G(o, v)
=

F (u, v)

F (o, v)
, u, v ∈ Γ.

Definition 2.1. Let Map(Γ,R) be the family of R-valued functions on Γ, equipped
with the topology of pointwise convergence. The Martin kernel K defines an embedding
K̂ : Γ → Map(Γ,R) given by u 7→ K(·, u). The Martin boundary is defined as ∂MΓ :=

K̂(Γ) \ K̂(Γ).

Thus, we can extend K̂ to ∂MΓ and denote by K(·, α) the function associated to
α ∈ ∂MΓ. It is harmonic because the P -Laplacian ∆PK(·, v) eventually becomes zero
at each point as |v| → +∞.

For a more detailed construction, we may provide metrics on ∂MΓ as follows. We
denote Cu := 1/G(o, u) for each u ∈ Γ. Then

(2.5) |K(u, v)| ⩽ G(u, v)

G(o, u)G(u, v)
= Cu

is bounded as a function of v ∈ Γ.
Arbitrarily choose weights D = {Du}u∈Γ with Du > 0 and

∑
u∈Γ

Du = 1. Then we can

construct the metric ρD on Map(Γ,R) as follows:

ρD(f, g) :=
∑
w∈Γ

Dw
|f(w)− g(w)|

Cw

.

By (2.5), it is straightforward to show that ρD takes values in the interval [0, 2] when
defined in the range of K̂ : Γ → Map(Γ,R).

The pullback K̂∗ρD of ρD by K̂ defines a metric completion Γ of Γ. It is a known result
in general topology that ρD is compatible with the topology of pointwise convergence.
Hence, ∂MΓ = K̂(Γ) \ K̂(Γ) is a metric realization of the Martin boundary.

An important characterization of the Martin boundary is the following Martin rep-
resentation formula. See, for example, [Woe00, Section 24]. That is, for every positive
harmonic function h on Γ, there is a positive Borel measure νh on ∂MΓ such that

(2.6) h(u) =

∫
∂MΓ

K(u, ξ)dνh(ξ).

Since the random walk Zn is transient, by [Dyn69, Theorem 4], the random walk
Zn starting from each point u ∈ Γ Pu-a.s. converges to a point Z∞ ∈ ∂MΓ. The
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harmonic measure ν∂MΓ
u seen from u ∈ Γ on the Martin boundary is then defined as

the distribution of Z∞ ∈ ∂MΓ, i.e.,
(2.7) ν∂MΓ

u (A) := Pu(Z∞ ∈ A), for each Borel subset A ∈ B(∂MΓ).

In particular, for the basepoint u = o of the graph, we denote ν∂MΓ := ν∂MΓ
o and call it

the harmonic measure if we do not emphasize the choice of u.
By (2.6), the harmonic measure is the representing measure of the constant function

1. Hence, by the change of the basepoint of the Green kernel, for all u ∈ Γ and ξ ∈ ∂MΓ,
we have

K(u, ξ)dν∂MΓ(ξ) = dν∂MΓ
u (ξ),

That is,

(2.8) dν∂MΓ
u

dν∂MΓ
(ξ) = K(u, ξ).

For a detailed discussion, see for example, [Kai96].
In this article, Assumption (B) in Section 1 implies G(u, u) = 1 for each u ∈ Γ.

Hence, the functions F and G are identical. In the following context, we use both
notations F and G for the same function.

2.3. Tile graphs and visual metrics. In this subsection, we review the notion of
visual metrics for dynamical systems. It was introduced in the study of expanding
Thurston maps by M. Bonk and D. Meyer in [BM17]. Independently, P. Haïssinsky
and K. M. Pilgrim also introduced a similar notion to the theory of coarse expanding
conformal dynamics in [HP09].

Let (X, f) be a dynamical system that satisfies the Assumptions in Subsection 2.1.
Consider a finite Markov partition α = {A0, . . . , AN} of X. We can define a graph
Γ = Γ(f, α), which is called the tile graph. We give an explicit definition of Γ below.

Let Γ consists of a 0-word ∅ and all n-words u = u1 . . . un, n ∈ Z>0, with u1, . . . , un ∈
{0, 1, . . . , N}, such that for each i ∈ {1, . . . , n − 1}, Aui+1

⊆ f(Aui
). Equivalently, the

vertex set Γ can be defined as
Γ := {∅} ∪ {u = u1 . . . un : n ∈ Z>0, u1, . . . , un ∈ {0, 1, . . . , N},

∀i ∈ {1, . . . , n− 1}, Aui+1
⊆ f(Aui

)}.
Each word u = u1 . . . un ∈ Γ is associated with a subset Au of X given by

Au := Au1 ∩ f−1Au2 ∩ · · · ∩ f−nAun .

In addition, we put A∅ := X. The edge set of Γ is defined by
E := {{u, v} : u, v ∈ Γ, ||u| − |v|| ⩽ 1, Au ∩ Av 6= ∅}.

Denote |u| as the length of a word u. We also call it the level of u. The tile graph
admits a basepoint o := ∅. It is the unique vertex of level 0.

The tile graph (Γ, E) admits a shift map σ on it, which is defined by
(2.9) Aσu = f(Au)

for each u ∈ Γ with |u| ⩾ 2, and σu := o for each u ∈ Γ with |u| ⩽ 1.
Let τ : Γ → Γ be defined by τ : u1 . . . un 7→ u1 . . . un−1 and ∅ 7→ ∅. It is the unique

map such that for every u ∈ Γ with u 6= ∅, Au ⊆ Aτu and |τu| = |u| − 1.
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As a metric space, Γ is equipped with a combinatorial distance d. We now review
some results about the hyperbolicity of the tile graph as a metric space (Γ, d) and the
definition of visual metrics. One can refer to [HP09] and [BM17] for details.

Consider (Γ, d) as a metric space. The Gromov product of u, v ∈ Γ with respect to
w ∈ Γ is defined to be

(2.10) 〈u, v〉w :=
1

2
(d(u,w) + d(w, v)− d(u, v)).

Let δ ⩾ 0 be a constant. A metric space Γ is said to be Gromov hyperbolic or hyperbolic
if
(2.11) 〈x, y〉w ⩾ min{〈x, z〉w, 〈z, y〉w} − δ,

for all x, y, z, w ∈ Γ.
Let (Γ, d) be a hyperbolic metric space. Fix x ∈ Γ. A sequence {xn}n∈Z>0 in X

converges at infinity if {〈xi, xj〉x} → +∞. The Gromov boundary ∂Γ is the set of
sequences {xn}n∈Z>0 converging at infinity modulo the equivalence relation defined by:
{xn}n∈Z>0 ∼ {yn}n∈Z>0 if {〈xn, yn〉x} → +∞. The Gromov product can be extended
to the Gromov boundary in such a way that (2.11) holds for all x, y, z ∈ Γ ∪ ∂Γ and
w ∈ Γ.

Fix a > 0 and x ∈ Γ. A metric ρ on ∂Γ is said to be an a-visual metric if
(2.12) ρ(η, ζ) � e−a⟨η,ζ⟩x ,

for all η, ζ ∈ ∂Γ. Here, the notation f � g means that there exists a constant C = C(�
) > 1 independent of η, ζ such that C−1f ⩽ g ⩽ Cf .

Remark 2.2. In fact, these definitions are independent of the choice of x ∈ Γ. For
sufficiently small a > 0, there always exists an a-visual metric. If for some δ > 0,
there exists w ∈ Γ such that the inequality (2.11) holds, then Γ is 2δ-hyperbolic for all
x, y, z, w ∈ Γ. Hence, to verify the hyperbolicity, it suffices to verify (2.11) for w = o.
See for example, [BH99, Section III.H] for details of Gromov hyperbolic metric spaces
and visual metrics.

The following theorem shows the hyperbolicity of the tile graph Γ. Such a result
was proved by M. Bonk and D. Meyer for expanding Thurston maps in [BM17, The-
orems 10.1 and 10.2], and for coarse expanding dynamical systems, it was proved by
P. Haïssinsky and K. M. Pilgrim in [HP09, Theorem 3.2.1 and Proposition 3.3.9]. For
the convenience of the reader, we give a proof in Proposition A.3.

Theorem 2.3. Let (X, f) be a dynamical system satisfying the Assumptions in Sub-
section 2.1 with a Markov partition α such that meshα < ξ. Then the tile graph Γ is
Gromov hyperbolic, and the Gromov boundary ∂Γ of Γ is naturally homeomorphic to
X.

By naturally homeomorphic we mean that the homeomorphism Ψ from the Gromov
boundary of Γ to X satisfies the following property: for every sequence of vertices
{un}n∈Z>0 in Γ converging to ξ ∈ ∂Γ in the Gromov boundary of Γ, the corresponding
sequence of subsets {Aun}n∈Z>0 converges in the sense of Gromov–Hausdorff convergence
to a singleton {Ψ(ξ)} ⊆ X.
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In the following context, we usually identify the Gromov boundary ∂Γ of the tile
graph Γ with the phase space X by the homeomorphism Ψ in Theorem 2.3. Hence, we
call a metric ρ on X an a-visual metric if Ψ∗ρ is an a-visual metric on ∂Γ. The following
proposition follows the idea of [BM17, Lemma 8.11] and [HP09, Proposition 3.3.2]. For
the convenience of the reader, we give a proof of it in Corollary A.12.

Proposition 2.4. Let (X, f), α, Γ satisfies the assumptions in Theorem 2.3. There
exists a constant a0 > 0 such that the following statement holds. Let ρ be an a-visual
metric on X for some constant 0 < a < a0. Then there is a constant C0 > 1 such that,
for each u ∈ Γ, there is a point x ∈ Au such that

Bρ

(
x,C−1

0 e−a|u|) ⊆ Au ⊆ Bρ

(
x,C0e

−a|u|),
and for all u, v ∈ Γ,

C−1
0 e−a⟨u,v⟩o ⩽ diamρ(Au ∪ Av) ⩽ C0e

−a⟨u,v⟩o .

The following proposition follows the idea of [HP09, Proposition 3.2.3]. For the
convenience of the reader, we provide a proof of it in Corollary A.13.

Proposition 2.5. Let (X, f), α, Γ satisfies the assumptions in Theorem 2.3. There
exists a constant a0 > 0 such that the following statement holds. Let ρ be an a-visual
metric on X for some 0 < a < a0. Then there is a constant ξ > 0 such that for all
x, y ∈ X and n ∈ Z>0 with ρ(fmx, fmy) < ξ for each integer 0 ⩽ m < n, we have

ρ(fnx, fny) � eanρ(x, y).

Moreover, for each x ∈ X, f |Bρ(x,ξ) is a homeomorphism to its image.

In this article, we always assume that X is equipped with an a-visual metric ρ for
some sufficiently small a > 0. The purpose of introducing the concept of visual metrics
is that we want the tile graph to be Gromov hyperbolic, and ρ is related to the tile
graph Γ.

3. Random walks on tile graphs

In this and all the following sections, we assume that the dynamical system (X, f)
satisfies the Assumptions in Subsection 2.1. Let Γ be the tile graph associated with f
and a fixed Markov partition α with meshα < ξ so that Theorem 2.3 can be applied.
The tile graph Γ is equipped with maps σ and τ defined in the beginning of Subsec-
tion 2.3. By Proposition A.6, we can further assume that the metric ρ on X is an
a-visual metric for some 0 < a < a0, where a0 is a constant such that Propositions 2.4
and 2.5 hold. We focus on some basic properties of the random walks on the tile graph
Γ under the Assumptions in Section 1.

We denote the shadow and the neighborhood of u associated with the random walk
by

0(u) := {v ∈ Γ : F (u, v) > 0} and(3.1)
N(u) := {v ∈ Γ : 0(u) ∩ 0(v) 6= ∅, ||u| − |v|| ⩽ R},(3.2)
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respectively. Here the constant R > 0 is taken from Assumption (A) in Section 1. For
each subset S ⊆ Γ, we put
(3.3) AS :=

⋃
u∈S

Au ⊆ X.

Recall that in Subsection 2.1, we denote the ball in X centered at x ∈ X with radius
r > 0 as B(x, r). We also denote the r-neighborhood of A ⊆ X as B(A, r).

We first show the openness of the shadow of each vertex on the boundary.
Lemma 3.1. For each v ∈ Γ, the subset A0(v) of X is open.
Proof. By (3.3) and (3.1), for each ξ ∈ A0(v), there is a vertex w ∈ Γ such that ξ ∈ Aw

and F (v, w) > 0. Choose

ϵ := ρ
(
Aw,

⋃
u∈Γ,|u|=|w|+1

Au∩Aw=∅

Au

)
> 0.

By Assumption (C) in Section 1, we have
{u ∈ Γ : |u| = |w|+ 1, Au ∩ Aw 6= ∅} ⊆ 0(w).

Hence, by the definition of ϵ,
B(Aw, ϵ) ⊆

⋃
u∈Γ,|u|=|w|+1

Au∩Aw ̸=∅

Au ⊆ A0(w).

It follows that B(ξ, ϵ) ⊆ A0(w) ⊆ A0(v). Since the choice of ξ ∈ A0(v) is arbitrary, we
finish our proof of the openness of A0(v). □

Then we prove a lemma about the boundedness of shadows.
Lemma 3.2. There is a constant C1 > 0 such that for each u ∈ Γ,
(3.4) A0(u) ⊆ B

(
Au, C1e

−a|u|).
Proof. Note that for each v ∈ 0(u), there is a sequence of vertices v0, . . . , vn ∈ Γ with
v0 = u and vn = v such that for each i ∈ {1, . . . , n}, P̂ (vi−1, vi) > 0. By Assumptions
(A) and (B) in Section 1, d(vi, vi−1) < R, and |vi| > |vi−1|. Hence, 〈vi, vi−1〉o ⩾ |vi|−R.
By Proposition 2.4, for each v ∈ 0(u),

diam(Av ∪ Au) ⩽
n∑

i=1

diam(Avi ∪ Avi−1
) ⩽

n∑
i=1

e−a(|vi|−R) ⩽
+∞∑
i=1

e−a(|u|+i−R) =
eaRe−a|u|

1− e−a
.

Hence, by setting C1 := eaR(1− e−a)−1, we finish the proof of the lemma. □
Corollary 3.3. There is a constant C6 > 0 such that for each u ∈ Γ,
(3.5) diamA0(u) < C6e

−a|u|.

Proof. Let C0 > 0 and C1 > 0 be the constants from Proposition 2.4 and Lemma 3.2,
respectively. By Proposition 2.4, diamAu < C0e

−a|u|. Hence, by Lemma 3.2 and
Proposition 2.4, diamA0(u)

< 2C1e
−a|u| + diamAu < (2C0 + 2C1)e

−a|u|. So C6 := 2C0 +
2C1 is what we want. □
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Roughly speaking, the following lemma shows that σ is a local similarity of the graph
Γ and the random walk is preserved locally by σ. This is the key property we need
from the assumption of f being a local homeomorphism.

Lemma 3.4. There is a number N0 ∈ Z>0 such that for each u ∈ Γ with |u| ⩾ N0,

(i) σ|0(u) : 0(u) → 0(σu) is an isomorphism between subgraphs of Γ,
(ii) σ|N(u) : N(u) → N(σu) is an isomorphism between subgraphs of Γ.

Proof. Let C6 > 0 and ξ > 0 be the constants from Corollary 3.3 and Proposition 2.5.
We choose N0 ∈ Z>0 such that

10(R + 1)C6e
−a(N0−R) < ξ.

Then by Corollary 3.3, for each u ∈ Γ with |u| ⩾ N0,

(3.6) diamA0(u) < C6e
−aN0 < ξ/4.

By Proposition 2.5, f |A0(u)
is a homeomorphism to its image. It follows from the

definition of the vertices and the edges of the tile graph that σ|0(u) is an isomorphism
between subgraphs of Γ since whether two subsets intersect is preserved by a home-
omorphism. It follows from Assumption (D) in Section 1 that the image of σ|0(u) is
exactly 0(σu).

For the proof of statement (ii), we fix u ∈ Γ such that |u| ⩾ N0. For each v ∈ Γ with
d(u, v) < R, there is a path u = u0, u1, . . . , uk = v in Γ connecting u and v for some
k < R. By Corollary 3.3, since each ui satisfies |ui| ⩾ N0 −R, we get

diam
(
A0(u) ∪ A0(v)

)
⩽

k−1∑
i=0

diam
(
A0(ui) ∪ A0(ui+1)

)
⩽

k−1∑
i=0

2C6e
−a(N0−R) < ξ/3.

It follows that if we put UR :=
⋃

v∈Γ,d(u,v)<R

A0(v), then diamUR < ξ. By Proposition 2.5,

f |UR
is a homeomorphism to its image. It is easy to show that for all v, w ∈ Γ,

0(w) ∩ 0(v) 6= ∅ if and only if A0(w) ∩ A0(v) 6= ∅. Hence, for each v ∈ Γ with
d(u, v) < R, 0(u) ∩ 0(v) 6= ∅ if and only 0(σu) ∩ 0(σv) 6= ∅. Therefore, it follows
immediately that σ|N(u) : N(u) → N(σu) is an isomorphism between subgraphs of
Γ. □

Recall that under the Assumptions in Section 1, the Green function G is equal to the
function F . The following lemma shows that the Green function is nearly multiplicative.
It is our key estimate on the Green function.

Lemma 3.5. Assume that u, v, s ∈ Γ, |v| ⩽ |u|, and w ∈ 0(u). Then

F (v, s)F (s, w) ⩽ F (v, w) ⩽
∑

t∈N(u)

F (v, t)F (t, w) ⩽ N1 sup
t∈N(u)

{F (v, t)F (t, w)},

where N1 := sup
u∈Γ

#N(u) is finite.
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Proof. By Lemma 3.4, the size of the set N(u) is equal to #N(σmu) if m := |u|−N0−R
is positive. Thus, the following is finite:

N1 = sup
u∈Γ

#N(u) = sup
u∈Γ,|u|⩽N0+R

#N(u) < +∞.

For each random trajectory Z0, . . . , Zn from Z0 = v ∈ Γ to Zn = w ∈ Γ, by Assump-
tion (A) in Section 1, |Zi| < |Zi+1| ⩽ |Zi| + R. Hence, there exists i ∈ {0, . . . , n} such
that ||Zi| − |u|| ⩽ R. Since w ∈ 0(u) and w = Zn ∈ 0(Zi), we have Zi ∈ N(u). It
follows that

F (v, w) = Pv(∃n ∈ Z>0 with Zn = w)

⩽
∑

t∈N(u)

Pv(∃n, i ∈ Z⩾0 with i < n, Zn = w,Zi = t)

=
∑

t∈N(u)

F (v, t)F (t, w)

⩽ N1 sup
t∈N(u)

{F (v, t)F (t, w)}.

For the first inequality,
F (v, w) = Pv(∃n ∈ Z>0 with Zn = w)

⩾ Pv(∃n, i ∈ Z⩾0 with i < n, Zn = w,Zi = s)

= F (v, s)F (s, w). □

4. Topology of the Martin boundary

In this section, we assume that the dynamical system (X, f) satisfies the Assumptions
in Subsection 2.1. Let Γ be the tile graph associated with f and a fixed Markov partition
α with each A ∈ α connected so that Theorem 2.3 can be applied. We focus on some
basic properties of the random walks on the tile graph Γ under the Assumptions in
Section 1.

In Subsection 4.1, we show that under the Assumptions in Section 1, the Martin
boundary of (Γ, P ) admits a surjection to the Gromov boundary of Γ. Combining this
with Theorem 2.3, we establish Theorem 1.1. We then provide a family of examples in
Subsection 4.2 to illustrate that this surjection may not be injective.

4.1. Proof of Theorem 1.1. Theorem 1.1 follows immediately from Theorem 2.3 and
Theorem 4.1 below.

Theorem 4.1. Let (X, f), α, and Γ satisfies the assumptions in Theorem 2.3. Let P
be a transition probability satisfying the Assumptions in Section 1. Let ∂MΓ and ∂Γ be
the Martin boundary of (Γ, P ) and the Gromov boundary of Γ, respectively. Then the
identity map on Γ extends continuously to a surjection Φ: ∂MΓ → ∂Γ.
Proof. In the proof of this theorem, we always identify the Gromov boundary ∂Γ of Γ
and the phase space X in the sense of Theorem 2.3.

Fix an arbitrary point ξ ∈ ∂MΓ. By the definition of the Martin boundary, ξ is
associated with a harmonic function K(·, ξ) on Γ. Assume that a sequence {xn}n∈Z>0
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in Γ converges to ξ ∈ ∂MΓ, or equivalently, K(·, xn) converges pointwise to K(·, ξ). We
aim to define Φ(ξ) as the limit point of xn on ∂Γ.

Claim. The sequence xn converges to a point η ∈ ∂Γ as n tends to +∞.
Note that for each x ∈ Γ∪ ∂MΓ, K(o, x) = 1. Since K(·, ξ) is harmonic, by (2.3) and

Assumption (B) in Section 1, for each M ∈ Z>0,

K(o, ξ) =
∑

x∈Γ,|x|⩾M

P̂ (M)(o, x)K(x, ξ).

Hence, there is a vertex u ∈ Γ with |u| ⩾ M such that
(4.1) K(u, ξ) 6= 0.

α

β

η

ζ

α(M2)

β(M2)

uo

Figure 4.1. Shadows split near the Gromov boundary by hyperbolicity.

We prove the claim by contradiction and assume that there are subsequences {yn} and
{zn} of {xn} converging to distinct points η and ζ in the Gromov boundary ∂Γ (which,
by Theorem 2.3, is compact), respectively. For each n ∈ Z>0, choose α(n), β(n) ∈ Γ
with |α(n)| = |β(n)| = n such that η ∈ Aα(n) and ζ ∈ Aβ(n). Then α and β are geodesic
rays starting from o. See Figure 4.1 for an intuition.

Choose a sufficiently large number M2 ∈ Z>0 such that
(4.2) 3C6e

−a(M2−R) < ρ(ζ, η),

where constants C6 > 0 and R > 0 are from Corollary 3.3 and the definition (3.2) of
N(·), respectively. If there is a vertex u ∈ Γ with |u| ⩾ M2−R such that 0(u) intersects
with both 0(α(M2)) and 0(β(M2)), then since η ∈ A0(α(M2)) and ζ ∈ A0(β(M2)), by
Corollary 3.3,

ρ(ζ, η) ⩽ ρ(ζ, A0(u)) + ρ(η, A0(u)) + diamA0(u)

< diamA0(α(M2)) + A0(β(M2)) + diamA0(u)

< 3C6e
−a(M2−R),

which contradicts with (4.2). Hence, by the definition of N(·),
(4.3) N(α(M2)) ∩N(β(M2)) = ∅.
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Since {yn} and {zn} converges to η and ζ, respectively, there is a number M1 > 0
such that for each integer n > M1,

Ayn ⊆
⋃

u∈Γ,|u|=M2+1,
η∈Au

Au and Azn ⊆
⋃

u∈Γ,|u|=M2+1,
ζ∈Au

Au.

Thus, by the construction of α and β,

yn ∈ 0(α(M2)) and zn ∈ 0(β(M2)).

Hence, by the definition of N(·), for each u ∈ Γ with |u| ⩾ M2, if yn1 , zn2 ∈ 0(u) for
some integers n1, n2 > M1, then τ |u|−M2u ∈ N(α(M2)) ∩ N(β(M2)), which contradicts
with (4.3). Here τ is defined in Subsection 2.3. It follows from the definitions (3.1) and
(2.4) of 0(·) and K(·, ·) that for all integers n1, n2 > M1 and each u ∈ Γ with |u| > M2,
either K(u, yn1) = 0 or K(u, zn2) = 0. Hence, K(u, ξ) = 0 because ξ is the limit point
of {yn} and {zn} in the Martin boundary. This contradicts the discussion (4.1) above.
This finishes the proof of the claim.

For each ξ ∈ ∂MΓ, we choose an arbitrary sequence {xn} in Γ converging to ξ. Recall
that since Γ is a proper geodesic metric space as a 1-complex, the Gromov boundary
produces a compactification of Γ, i.e., Γ∪ ∂Γ is compact. See for example, [BH99, Part
III, Proposition 3.7]. By the claim above, there is a unique limit point η ∈ ∂Γ of {xn}.
Now put Φ(ξ) := η, then Φ is what we want. The well-definedness is exactly what we
have proved in the contradictory process of the proof of the claim.

We verify that the map Φ is continuous by a diagonal argument. Suppose for the
purpose of contradiction that a sequence {xn}+∞

n=1 in ∂MΓ converges to x ∈ ∂MΓ, but
there is an open set U ⊆ Γ ∪ ∂Γ with U 3 Φ(x) such that Φ(xn) 6∈ U for all n ∈ Z>0.
Recall that Γ∪∂Γ is compact and Hausdorff. Hence, we can find a closed subset V ⊆ U
and an open subset W of Γ∪ ∂Γ with Φ(x) ∈ W ⊆ V . Since Γ is dense in Γ∪ ∂MΓ, for
each n ∈ Z>0, we can choose vertices {yn,m}+∞

m=1 in Γ that converge to xn in Γ ∪ ∂MΓ
(thus to Φ(xn) /∈ V in Γ∪∂Γ) such that yn,m 6∈ V for all m ∈ Z>0. We can choose open
subsets Y1 ⊇ · · · ⊇ Yn ⊇ · · · of Γ ∪ ∂MΓ such that

(4.4)
+∞⋂
n=1

Yn = {x}

because Γ ∪ ∂MΓ is metrizable. For each n ∈ Z>0, since {xi}+∞
i=1 converges to x, there

exists in ∈ Z>0 such that xin ∈ Yn. Since {yin,m}+∞
m=1 converges to xin , there exists

jn ∈ Z>0 such that yin,jn ∈ Yn. Hence, by (4.4), {yin,jn}+∞
n=1 converges to x in the Martin

boundary. By the definition of Φ, {yin,jn} converges to Φ(x) in the Gromov boundary.
This contradicts with the assumptions that yn,m 6∈ V . Hence, the assumption that the
sequence {xn}+∞

n=1 in ∂MΓ converges to x ∈ ∂MΓ implies that {Φ(xn)}+∞
n=1 converges to

Φ(x). Therefore, Φ is continuous.
To see that Φ is surjective, we recall that Γ∪∂MΓ is compact. For each point ξ ∈ ∂Γ,

we may choose a sequence {xn} → ξ and find a subsequence of it which converges to
η ∈ ∂MΓ. Then by definition, Φ(η) = ξ. □
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4.2. Non-injective examples. In this subsection, we give a proof of Theorem 1.2 to
show that the surjection in Theorem 4.1 may not be a homeomorphism. We provide
a family of examples to illustrate it. In these examples, the dynamical system is the
doubling map on the unit circle and the Markov partition is associated with the dyadic
expansion of real numbers. So these examples are simple in the combinatorial structure.
The complexity comes from the transition probabilities.

Put X = S1 = R/Z and let f : x 7→ 2x be the doubling map on X. We set α :=
{A0, A1} with A0 := [0, 1/2], A1 := [1/2, 1] as the Markov partition for (X, f). Then the
vertices of Γ = Γ(f, α) are all of the finite binary sequences. Each vertex corresponds
to an interval of the form Ii,n := [i/2n, (i + 1)/2n] with n ∈ Z⩾0, i ∈ {0, 1, . . . , 2n − 1}.
For the sake of convenience, we use the notation Ii,n for i ∈ Z and we should note that
Ii,n = Ii+2n,n ⊆ X. We denote the vertex u ∈ Γ with Au = Ii,n by ui,n. To better
understand what the graph looks like, see Figure 4.2.

I0,0

I0,1

I0,2

I0,3

I0,4 I1,4

I1,3

I2,4 I3,4

I1,2

I2,3

I4,4 I5,4

I3,3

I6,4 I7,4

I1,1

I2,2

I4,3

I8,4 I9,4

I5,3

I10,4 I11,4

I3,2

I6,3

I12,4 I13,4

I7,3

I14,4 I15,4

Figure 4.2. The tile graph of the doubling map on the circle.

For each x ∈ (0, 1), put y := (1−x)/3. Fix x ∈ (0, 1). We define a family of transition
probabilities px on Γ. Define

px(o, 1) :=
1 + 2x

3
, px(o, 0) :=

2− 2x

3
,

and for all integers n,m ∈ Z>0, i ∈ {0, 1, . . . , 2n − 1}, and j ∈ {0, 1, . . . , 2m − 1}, put

px(ui,n, uj,m) :=


y if m = n+ 1, j ∈ Ji,n such that j 6≡ 2 mod 4,

x if m = n+ 1, j ∈ Ji,n such that j ≡ 2 mod 4,

0 otherwise,

where

Ji,n :=
{
j ∈

[
0, 2n+1 − 1

]
: k ∈ {2i− 1, 2i, 2i+ 1, 2i+ 2}, j ≡ k mod 2n+1

}
.

It is easy to verify that px satisfies the Assumptions in Section 1. For the sake of
convenience, we write p = px if there is no other choice of x. See Figure 4.3 for an
intuition of the distribution of px.
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Figure 4.3. The transition probabilities to the shaded vertices are all
equal to x, while to the remaining vertices (except for 0 and 1), they are
all equal to (1 − x)/3. Some of the vertices xn, yn, and zn are enclosed
by the trapezoid.

Theorem 1.2 follows from the following proposition. Informally speaking, the propo-
sition says that if x ∈ (2/5, 1), then the transition probability px becomes “unbalanced”,
and this property leads to the existence of different growth rates in harmonic functions
supported near a geodesic ray starting from o. On the other hand, although there
is a counterexample of Φ being a homeomorphism, we still have ideas to prove that
sometimes with a “balanced” transition probability, it is a homeomorphism.

Proposition 4.2. Assume that the dynamical system (X, f), the Markov partition α,
and the transition probability px are defined above for some x ∈ (0, 1). The surjection
Φ given in Theorem 4.1 is a homeomorphism if x ∈ (0, 2/5), while if x ∈ (2/5, 1), then
Φ is not a homeomorphism.

Proof. For each x ∈ (2/5, 1), we show that for t = 1/2, #Φ−1(t) ⩾ 2. Consider two
sequences of vertices {xn}n∈Z>0 and {yn}n∈Z>0 with

xn := u2n−1−2,n, yn := u2n−1−1,n.

Since Ayn = [1/2− 1/2n, 1/2] contains the point t, {yn} is a geodesic ray from o to the
boundary point t. Hence, yn converges to t in the topology of the Gromov boundary.
Note that d(xn, yn) = 1, so xn has a bounded distance from yn and xn also converges
to t in the topology of the Gromov boundary.

Then we show that {K(·, xn)}, {K(·, yn)} converge to different harmonic functions
on Γ, thus, {xn} and {yn} converge to different points in the Martin boundary ∂MΓ.
We moreover put zn := u2n−1,n. Then by the definition of p, as we can see in Figure 4.4
that for each n ∈ Z>0 and each v ∈ Γ,

P̂ (v, xn+1) > 0 ⇐⇒ v ∈ {xn, yn},

P̂ (v, yn+1) > 0 ⇐⇒ v ∈ {yn, zn},

P̂ (v, zn+1) > 0 ⇐⇒ v ∈ {yn, zn}.
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Hence, by induction, K(·, xn) and K(·, yn) are both supported on {xn} ∪ {yn} ∪ {zn} ∪
{o, 0, 1}.

· · · · · · · · ·

01n1 10n0 10n1

01n11 10n00 10n01

01n111 10n000 10n001

01n1111 10n0000 10n0001

· · · · · · · · ·

Figure 4.4. A part of the subgraph consisting of xn, yn, and zn.

Note that K(u, xn) (resp. K(u, yn)) is harmonic at each u ∈ Γ with |u| < n. Thus,
by the definition of px,

K(xm, xn) = P̂ (xm, xm+1)K(xm+1, xn) = xK(xm+1, xn),

K(ym, xn) = P̂ (ym, xm+1)K(xm+1, xn) + P̂ (ym, ym+1)K(ym+1, xn)

+ P̂ (ym, zm+1)K(zm+1, xn)

= xK(xm+1, xn) + y(K(ym+1, xn) +K(zm+1, xn)),

K(zm, xn) = P̂ (zm, ym+1)K(ym+1, xn) + P̂ (zm, zm+1)K(zm+1, xn)

= y(K(ym+1, xn) +K(zm+1, xn))

for each integer m ∈ [0, n− 1] with initial value
K(xm, xm) = 1/F (o, xm), K(ym, xm) = K(zm, xm) = 0,

K(ym, ym) = 1/F (o, ym), K(xm, ym) = K(zm, ym) = 0.
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Hence, if we put

M =

x 0 0
x y y
0 y y

 ,

then

(4.6)

K(xm−k, xm)
K(ym−k, xm)
K(zm−k, xm)

 =
Mk

F (o, xm)

10
0

 ,

K(xm−k, ym)
K(ym−k, ym)
K(zm−k, ym)

 =
Mk

F (o, xm)

01
0

 .

The characteristic polynomial of M is

χM(t) = (t− x)(t− 2y)t.

Recall that y = (1− x)/3. The characteristic vectors of characteristic values 0, x, and
2y are (0,−1, 1), (5x− 2, 4x− 1, 1− x) and (0, 1, 1), respectively. We should also note
that for each x > 2/5, the inequality x > 2y always holds. For each n ∈ Z>0, we can
see the asymptotic behavior of Mn(1, 0, 0) from the decomposition

Mn

10
0

 =
xn

5x− 2

5x− 2
4x− 1
1− x

− 3x(2(1− x)/3)n

2(5x− 2)

01
1

 .

Hence, by (4.6), we have

lim
m→+∞

K(xi, xm) : K(yi, xm) : K(zi, xm) = 5x− 2 : 4x− 1 : 1− x,(4.7a)

lim
m→+∞

K(xi, xm) : K(xi+1, xm) = 1 : x.(4.7b)

That implies that xm converges to a point ξx in the Martin boundary, and moreover
K(·, ξx) can be calculated by (4.7) explicitly since we have showed that K(·, xm) is
supported on {xn, yn, zn : n ∈ Z>0}∪{0, 1, o}. To be precise, there is a constant Cx > 0
such that for each integer n ⩾ 2,
(4.8)
K(xn, ξx) = Cxx

−n(5x− 2), K(yn, ξx) = Cxx
−n(4x− 1), K(zn, ξx) = Cxx

−n(1− x).

However, for the asymptotic behavior of K(·, ym), we have for each n ∈ Z>0,

Mn

01
0

 =
(2(1− x)/3)n

2

01
1

 .

Hence, by (4.6), we have

lim
m→+∞

K(xi, ym) : K(yi, ym) : K(zi, ym) = 0 : 1 : 1,(4.9a)

lim
m→+∞

K(xi, xm) : K(xi+1, xm) = 3 : 2(1− x).(4.9b)

This implies that ym converges to a point ξy in the Martin boundary, and moreover
K(·, ξy) can be calculated by (4.9) explicitly since we have showed that K(·, ym) is
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supported on {xn, yn, zn : n ∈ Z>0}∪{0, 1, o}. To be precise, there is a constant Cy > 0
such that for each n ⩾ 2,

(4.10) K(xn, ξy) = 0, K(yn, ξy) = Cy

(
3

2(1− x)

)n

, K(zn, ξy) = Cy

(
3

2(1− x)

)n

.

Now by (4.8) and (4.10), ξx and ξy are different points in the Martin boundary.
However, from the construction of {xn} and {yn}, Φ(ξx) = Φ(ξy) = 1/2. Therefore, in
this situation of x ∈ (2/5, 1), Φ is not a homeomorphism.

For x ∈ (0, 2/5), we prove that Φ is a homeomorphism. For each ξ ∈ X, we assume
that η, ζ ∈ ∂MΓ are two preimages of ξ, i.e., Φ(η) = Φ(ζ) = ξ. We aim to prove η = ζ.
Let K(·, η) and K(·, ζ) be the harmonic functions associated with η and ζ, respectively.
It suffices to show that K(·, η) = K(·, ζ).

Case 1. If ξ = 2−km for some m, k ∈ Z⩾0 with k > 3 and 4|m, then we denote, for
each n ∈ Z>0,

xn := u2nm−2,k+n, yn := u2nm−1,k+n, zn := u2nm,k+n, wn := u2nm+1,k+n.

Note that for each u = ui,k+n with u 6∈ {xn, yn, zn, wn}, A0(u) =
(
(i − 1)/2n+k, (i +

2)/2n+k
)
. For such a vertex u, ξ 6∈ A0(u), thus K(u, η) = 0. Therefore, if |u| > k, then

K(u, η) > 0 implies u ∈ {xn, yn, zn, wn} for some n ∈ Z>0.
We do similar calculations as in the case of x ∈ (2/5, 1). Put y := (1 − x)/3. Since

K(·, η) is harmonic, we have
K(xn, η)
K(yn, η)
K(zn, η)
K(wn, η)

 =


x
x y y

y y y
y


k 

K(xn+l, η)
K(yn+l, η)
K(zn+l, η)
K(wn+l, η)


Since the matrix

M :=


x
x y y

y y y
y


has a maximal characteristic value λ = 2y with characteristic vector (0, 1, 1, 0). Since
the characteristic vectors of the other characteristic values are

x− 2y
x− y
y
0

 ,


0
−1
0
1

 , and


0
−1
1
0

 ,

which are all not non-negative, there is a constant C > 0 such that for each n ∈ Z>0,
K(xn, η) = K(wn, η) = 0 and K(yn, η) = K(zn, η) = C(2y)n.

This determines the whole function K(·, η) by

K(u, η) =
∑

v∈{x1,y1,z1,w1}

F (u, v)K(v, η) for each u ∈ Γ with |u| ⩽ k.
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So does K(·, ζ). Thus, for some D > 0, K(·, η) = DK(·, ζ). Moreover, K(o, η) =
K(o, ζ) = 1. Hence, K(·, η) = K(·, ζ).

Case 2. If ξ 6= 2−km for every m, k ∈ Z⩾0, then ξ is not on the boundary of any tile.
Hence, for each n ∈ Z⩾0, there is a unique tile yn ∈ Γ with |yn| = n such that ξ ∈ Ayn .
We assume that yn = uin,n. Then we denote xn := uin−1,n and zn := uin+1,n the two
adjacent tiles of the same level as yn.

Note that for all integers i ∈ Z and n > 1, we have

A0(ui,n) =
(
(i− 1)/2n+k, (i+ 2)/2n+k

)
.

If ξ ∈ A0(ui,n), then ui,n ∈ {xn, yn, zn}. That is, K(·, η) and K(·, ζ) are both supported
on {xn, yn, zn : n ∈ Z⩾0}.

According to the remainder of in mod 4, the transition matrix falls into one of the 4
types, which are

M0 :=

y y
y y y

y

 , M1 :=

yy y x
y x

 , M2 :=

y x
y x y

y

 , M3 :=

xx y y
y y

 .

That is, if in ≡ jn (mod 4) for some jn ∈ {0, 1, 2, 3} and n > 2, then by the construction
of the transition probability px, since K(·, η) is harmonic,

(4.11)

K(xn−1, η)
K(yn−1, η)
K(zn−1, η)

 = Mjn

K(xn, η)
K(yn, η)
K(zn, η)

 .

By (4.11) and properties of each Mj, we deduce that K(xn−1, η)+K(zn−1, η) = K(yn−1, η)
for each integer n > 2. We denote, for each integer n > 1,

Λn(η) :=
K(xn, η)

K(yn, η)
.

Then we denote z := x/y. Equation (4.11) can be written as

Λn−1(η) = Fjn(Λn(η)),

where

Fj(t) :=



t+ 1

2
if j = 0,

yt

yt+ (1− t)x+ y
=

t

(1− z)t+ z + 1
if j = 1,

yt+ x

x+ y
=

t+ z

1 + z
if j = 2,

xt

y + y(1− t) + xt
=

zt

(z − 1)t+ 2
if j = 3.
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The condition x ∈ (0, 2/5) implies z ∈ (0, 2). Note that for each t ∈ [0, 1], the
derivative of Fj satisfies

F ′
0(t) = 1/2 < 1,

F ′
1(t) =

z + 1

((1− z)t+ (1 + z))2
⩽ max

{
z + 1

4
,

z + 1

(1 + z)2

}
< 1,

F ′
2(t) =

1

1 + z
< 1,

F ′
3(t) =

2z

((z − 1)t+ 2)2
⩽ max

{
2z

4
,

2z

(1 + z)2

}
< 1.

Hence, there is a number λ ∈ (0, 1) such that for each t ∈ [0, 1] each and j ∈ {0, 1, 2, 3},
F ′
j(t) ⩽ λ. It follows that for each interval I ⊆ [0, 1], |Fj(I)| ⩽ λ|I|. By iteration, for

each integer n > 2 and each m ∈ Z>0, the length of the interval∣∣Fjn ◦ · · · ◦ Fjn+m([0, 1])
∣∣ ⩽ λm.

Let m → +∞. There is a unique point in the decreasing sequence of closed sets
Λn−1(η) ∈ Fjn([0, 1]) ⊇ Fjn ◦ Fjn+1([0, 1]) ⊇ · · · .

The discussion above also holds for ζ taking the place of η. Hence, Λn−1(η) = Λn−1(ζ)
for each integer n > 2. By the definition of Λ, there is a constant Cn > 0 for each
integer n > 2 such that

K(u, η) = C|u|K(u, ζ) for each u ∈ Γ with |u| > 1.

By (4.11), it is straightforward to show that all of the Cn’s are identical. Hence, K(·, η)
is a multiple of K(·, ζ). Since K(o, ζ) = 1 = K(o, η), the two functions are identical.
That is, ζ = η.

Finally, combining Case 1 and Case 2, we have proved that if x ∈ (0, 2/5), then
Φ is a bijection. Since a continuous bijection between compact Hausdorff spaces is a
homeomorphism, we deduce that Φ is a homeomorphism when x ∈ (0, 2/5). □

Remark 4.3. In fact, for x = 2/5, we can still prove by a similar method that px is a
homeomorphism. The proof is a little more complicated because, in step 1, the matrix
M is not diagonalizable at the characteristic value x = 2y = 2/5, while in step 2, there
is not a uniform bound of F ′

j(t). In fact, F ′
3(0) = 1. These obstacles can be bypassed

by careful discussions. In step 1, the convergence result of the Martin kernel is still
true. In step 2, we can still show by the explicit expression of F3 that for I close to 0,
|F ′

3(I)| ⩽ |I|
/(

1 + 2−1|I|
)
, and the iterated length of an interval still converges to 0.

Remark 4.4. According to this example, in some cases, when the transition prob-
ability is not “balanced”, some points of the phase space split into several points in
the Martin boundary of the tile graph. According to the proof, we can see that, the
corresponding harmonic functions K(·, ξ) of these points ξ ∈ ∂MΓ may have different
growth rates. Moreover, the difference in the growth rate causes the separation of these
points. The failure of the Harnack inequality makes the Green kernels K(·, u) and
K(·, v) corresponding to two adjacent vertices u, v ∈ Γ different.
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5. Fractal dimension of the harmonic measure

This section is devoted to establishing Theorem 1.3. In this section, we assume that
the dynamical system (X, f) satisfies the Assumptions in Subsection 2.1. Let Γ be the
tile graph associated with f and a fixed Markov partition α with each A ∈ α connected
so that Theorem 2.3 can be applied. The tile graph Γ is equipped with a natural shift
map σ defined in Subsection 2.3. We focus on some basic properties of the random
walks on the tile graph Γ under the Assumptions in Section 1.

By Assumptions (D) and (B) in Section 1, |Zn+1|− |Zn| is i.i.d. with the distribution
of |Z1|. By Assumption (A) in Section 1, E(|Z1|) < +∞. Hence, by the law of large
numbers for i.i.d. variables, |Zn|/n has an almost sure limit l := E(|Z1|). We call l the
asymptotic drift or the drift of the random walk P .

Let ν := Φ∗ν
∂MΓ be the push-forward of the harmonic measure from the Martin

boundary to X by the map Φ provided in Theorem 4.1. By abuse of terminology, we
also call ν the harmonic measure if there is no confusion on the domain of ν.

For a sample path ω ∈ Ω, we denote by Zn = Zn(ω) ∈ Γ the vertex of the n-th step
of the path. The shift map T : Ω → Ω for the Markov process defined by
(5.1) Zn(Tω) = σ|Z1(ω)|Zn+1(ω), for n ∈ Z>0 and ω ∈ Ω,

induces a dynamical system on the space of sample paths. By Assumption (D) in
Section 1, T is P-measure-preserving. In fact, T is ergodic by Theorem 5.4.

We put, for each n ∈ Z>0,
gn(ω) := − logF (o, Zn),(5.2a)
g̃n(ω) := − logF (ZN0 , ZN0+n).(5.2b)

We will show by an ergodic theorem that gn/n converges to a constant lG, called the
Green drift, almost surely, and so does the limit supremum of fn/n. The almost sure
limit supremum of fn/n is related to the packing dimension of the harmonic measure
dimP ν̃.

The following lemma justifies the definition of the Green drift lG, which plays an
important role in the dimension formula of the harmonic measure.
Lemma 5.1. The sequence of measurable functions {gn/n}n∈Z>0 converges almost surely
to some constant lG ∈ R.

The Harnack inequality is a key tool in similar investigations. Note that the random
walk we consider is one-sided, and the classical Harnack inequality does not hold in our
context. Our strategy is to formulate and establish a weaker version of the Harnack
inequality as follows.
5.1. Weak Harnack inequality.
Lemma 5.2 (Weak Harnack inequality). There exist constants C3 > 0 and N1 ∈ Z>0

such that, for each pair of u, v ∈ Γ, there is a constant C2 = C2(u, v) > 1 with the
following property: for each w ∈ Γ with |w| −N1 ⩾ max{|u|, |v|} satisfying either

(1) A0(w) ∩ Au 6= ∅ or
(2) AN(w) ⊆ B

(
Au, C3e

−a|u|),
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we have F (v, w) ⩽ C2F (u,w).

In order to establish Lemma 5.2 at the end of this subsection, we first verify the
following lemma showing that in general if some tile w ∈ Γ, as a subset of X, completely
lies in a certain neighborhood of another tile u ∈ Γ, then w must be in the shadow of
u.

Lemma 5.3. There is a number C3 > 0 such that for all u,w ∈ Γ with |w| ⩾ |u| + 1,
if Aw ⊆ B

(
Au, C3e

−a|u|), then w ∈ 0(u).

Proof. For each u ∈ Γ, put
(5.3) C ′

3(u) := ea|u| inf{ρ(Au, Av) : v ∈ Γ, |v| = |u|+ 1, d(Au, Av) > 0}.
Let ξ be the constant in Proposition 2.5. Fix M > 0 sufficiently large such that for all
u, v ∈ Γ with |u| ⩾ M and d(u, v) ⩽ 2,
(5.4) diamAu ∪ Av < ξ.

Consider u, v, u′, v′ ∈ Γ and n ∈ Z>0 such that |u| = M , d(u′, v′) ⩽ 2, σnu′ = u,
and σnv′ = v. For all x ∈ Au′ and y ∈ Av′ , by Proposition 2.5 and (5.4), we have
ρ
(
fnx, fny

)
� e−anf(x, y) ⩾ e−anC ′

3(u). Hence, there is a constant D = D(�) > 0
such that C ′

3(u
′) ⩾ D min

u′′∈Γ,|u′′|⩽M
C ′

3(u
′′).

It follows that C ′
3(u) has a positive infimum as u ranges over Γ. We denote the

infimum by C3 > 0. If Aw ⊆ B
(
Au, C3e

−a|u|), then, since |w| ⩾ |u| + 1, by (5.3),
Aw ⊆ Av for some v ∈ Γ with |v| = |u| + 1 and Av ∩ Au 6= ∅. Therefore, by the
definition (3.1) of 0(·) and Assumption (C) in Section 1, w ∈ 0(u). □
Proof of Lemma 5.2. Let C3 > 0 be the constant from Lemma 5.3. Fix u, v ∈ Γ.
Choose an integer N1 > R such that
(5.5) 4C6e

−a(N1−R) ⩽ C3,

where the constants C6 > 0, C3 > 0, and R > 0 are from Corollary 3.3, Lemma 5.3,
and the definition (3.2) of N(·), respectively.

By Corollary 3.3, for all w ∈ Γ and x ∈ N(w), since 0(x) ∩ 0(w) 6= ∅,
diamAw ∪ Ax ⩽ diamA0(w) + diamA0(x) < 2C6e

−a(|w|−R).

Hence,
(5.6) AN(w) ⊆ B

(
Aw, 2C6e

−a(|w|−R)
)
.

Similarly, we can show that A0(w) ∩ Au 6= ∅ implies

(5.7) Aw ⊆ B
(
Au, C6e

−a|w|).
Hence, for each w ∈ Γ with |w| −N1 ⩾ max{|u|, |v|} that satisfies condition (1), by

(5.6), (5.7), and (5.5), we always have AN(w) ⊆ B
(
Au, C3e

−a|u|). That is, condition (2)
holds for w. Hence, for each w ∈ Γ with |w| − N1 ⩾ max{|u|, |v|} satisfying either
condition (1) or (2) of this lemma, by Lemma 5.3,
(5.8) N(w) ⊆ 0(u).
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Denote
S := {y ∈ 0(u) : ||y| −max{|u|, |v|} −N1| ⩽ R} and(5.9)
C2 := #S ·max{F (v, y)/F (u, y) : y ∈ S}.(5.10)

Let τ : Γ → Γ be from Subsection 2.3. Put w′ := τ |w|−(max{|u|,|v|}+N1)w. Then it
follows from (5.8) that N(w′) ⊆ S. By Lemma 3.5, (5.10), and (5.9), we have

F (v, w) ⩽
∑

x∈N(w′)

F (v, x)F (x,w) ⩽ C2

#S

∑
x∈N(w′)

F (u, x)F (x,w)

⩽ C2

#S

∑
x∈N(w′)

F (u,w) ⩽ C2F (u,w). □

5.2. Green drift lG. Before establishing Lemma 5.1, we first demonstrate some ergodic
property of the shift map T defined by (5.1).

We denote the cylinders in the space of sample paths Ω by
(5.11) [u0, . . . , un] := {ω ∈ Ω : Z0(ω) = u0, . . . , Zn(ω) = un},
for n ∈ Z>0 and u0, . . . , un ∈ Γ. Recall that by definition, for each ω ∈ Ω, Z0(ω) = o.
Hence, if u0 = o, then [u0, . . . , un] = ∅.

Theorem 5.4. Let (X, f) be a dynamical system that satisfies the Assumptions in
Subsection 2.1 and Γ be the tile graph associated with f and a Markov partition α of
(X, f) from Theorem 2.3. Suppose that the transition probability P on Γ satisfies the
Assumptions in Section 1. Then the shift map T is P-measure-preserving and mixing.

Proof. Let Ω be the space of all sample paths. By the definition of T , for each m ∈ Z>0

and each cylinder [u0, . . . , un] ⊆ Ω with n ∈ Z>0 and u0, . . . , un ∈ Γ,

(5.12) T−m[u0, . . . , un] =
{
ω ∈ Ω : σ|Zm(ω)|Zm(ω) = u0, . . . , σ

|Zm(ω)|Zn+m(ω) = un

}
.

Hence, by the Markov property and Assumption (D) in Section 1, for all k,m ∈ Z>0

and v0, . . . , vm ∈ Γ,
P
(
T−k[v0, . . . , vm]

)
= P

(
σ|Zk|Zk = v0, . . . , σ

|Zk|Zk+m = vm
)

=
∑

σ|Zk|wm−1=vm−1

P
(
σ|Zk|Zk = v0, . . . , σ

|Zk|Zk+m−2 = vm−2, Zk+m−1 = wm−1

)
· σ|Zk|

∗ P (wm−1)({vm})
= P

(
σ|Zk|Zk = v0, . . . , σ

|Zk|Zk+m−1 = vm−1

)
P (vm−1)({vm})

= P
(
T−k[v0, . . . , vm−1]

)
P̂ (vm−1, vm).

Applying the equation above recursively, then we get

P
(
T−k[v0, . . . , vm]

)
= P̂ (v0, v1) · · · P̂ (vm−1, vm) = P([v0, . . . , vm]).

That is, T is P-measure-preserving.
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To show that T is mixing, it suffices to show that for all n,m ∈ Z>0, u0, . . . , un ∈ Γ,
and v0, . . . , vm ∈ Γ,
(5.13) lim

k→+∞
P
(
[u0, . . . , un] ∩ T−k[v0, . . . , vm]

)
= P([u0, . . . , un])P([v0, . . . , vm])

We may assume that v0 = o and P([v0, . . . , vm]) = P̂ (v0, v1) · · · P̂ (vm−1, vm) > 0 because
otherwise, both sides of (5.13) are zero. Then for each integer k > n, by the Markov
property and Assumption (D) in Section 1,

P
(
[u0, . . . , un] ∩ T−k[v0, . . . , vm]

)
= P

(
Z0 = u0, . . . , Zn = un, σ

|Zk|Zk = v0, . . . , σ
|Zk|Zk+m = vm

)
=

∑
σ|Zk|wm−1=vm−1

P
(
Z0 = u0, . . . , Zn = un, σ

|Zk|Zk = v0, . . . ,

σ|Zk|Zk+m−2 = vm−2, Zk+m−1 = wm−1

)
σ|Zk|
∗ P (wm−1)({vm})

= P
(
Z0 = u0, . . . , Zn = un, σ

|Zk|Zk = v0, . . . , σ
|Zk|Zk+m−1 = vm−1

)
· P (vm−1)({vm})

= P
(
[u0, . . . , un] ∩ T−k[v0, . . . , vm−1]

)
P̂ (vm−1, vm).

Hence, by applying the equation above recursively, we have
P
(
[u0, . . . , un] ∩ T−k[v0, . . . , vm]

)
= P([u0, . . . , un])P̂ (v0, v1) · · · P̂ (vm−1, vm)

= P([u0, . . . , un])P([v0, . . . , vm]).

This proves (5.13) and the theorem follows. □
Proof of Lemma 5.1. Let N0 ∈ Z>0 be the constant in Lemma 3.4. For all n,m ∈ Z>0

and each sample path ω ∈ Ω, by Lemma 3.4 and Assumption (D) in Section 1,
F
(
σ|Zn|ZN0+n, σ

|Zn|ZN0+n+m

)
= F (ZN0+n, ZN0+n+m).

Hence, by Lemma 3.5 and (5.2),
g̃n(ω) + g̃m(T

nω) = − log(F (ZN0 , ZN0+n)F (ZN0+n, ZN0+n+m))

⩾ − logF (ZN0 , ZN0+n+m)

= g̃n+m(ω).

By Kingman’s subadditive ergodic theorem, since T is ergodic by Theorem 5.4, g̃n/n
converges almost surely to some constant. Hence, we can define lG as the almost-sure
limit of g̃n/n.

Claim. For each N ∈ Z>0, almost surely, there is an integer n > N such that
Z∞ ∈ AZn .

To verify the claim, we denote, for each u ∈ Γ, that
(5.14) S(u) :=

{
v ∈ 0(u) : B

(
A0(v), e

−a|v|) ⊆ Au

}
.

Then for each v ∈ S(u), and each w ∈ 0(v),
B
(
A0(w), e

−a|w|) ⊆ B
(
A0(v), e

−a|v|) ⊆ Au.
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That is,

(5.15) S(u) ⊇
⋃

v∈S(u)

0(v).

Assume that u ∈ Γ. By the properties of Markov partitions, the interior of Au is
non-empty. Hence, for each ξ ∈ intAu, there is a constant δ > 0 such that

B(ξ, δ) ⊆ intAu.

By Lemma 5.3, for each v ∈ Γ with ξ ∈ Av and |v| sufficiently large, we have v ∈ 0(u).
Besides, by Lemma 3.3, if |v| is sufficiently large, then B

(
A0(v), e

−a|v|) ⊆ intAu. It
follows that for v ∈ Γ with ξ ∈ Av and |v| sufficiently large, v ∈ S(u). Thus, S(u) is
nonempty.

Let N0 ∈ Z>0 be the constant in Lemma 3.4. For each u ∈ Γ with |u| ⩽ N0, choose
v(u) ∈ S(u). By (5.15), for each v ∈ S(u), 0(v) ⊆ S(u). By (5.14), Av ⊆ Au. Hence, it
follows that, after possibly replacing v(u) by vertices in 0(v(u)), we may assume that
there is a sufficiently large integer n0 such that P̂ (n0)(u, v(u)) > 0 for each u ∈ Γ with
|u| ⩽ N0. Put

ϵ1 := min
u∈Γ,|u|⩽N0

{
P̂ (n0)(u, v(u))

}
.

It follows from the local similarity of Γ, i.e., Lemma 3.4, that for each u ∈ Γ, there is a
vertex
(5.16) v(u) ∈ S(u)

such that
(5.17) P̂ (n0)(u, v(u)) ⩾ ϵ1.

In fact, we can choose

v(u) :=
((
σ|u|−N0

)∣∣
0(u)

)−1
v
(
σ|u|−N0u

)
for all u ∈ Γ with |u| > N0.

Next, we show that
(5.18) P(∃n,m ∈ Z⩾0,m > n > N,Zm ∈ S(Zn)) = 1.

In fact, for each n ∈ Z⩾0, by (5.17),
P(Zn+n0 = v(Zn) | σ(Zn)) ⩾ ϵ1.

Here σ(Zn) is the σ-field generated by Zn. By (5.16),
P(Zn+n0 ∈ S(Zn) | σ(Zn)) ⩾ ϵ1.

Hence, by induction, for each m ∈ Z>0,
P(∀k ∈ Z⩾0 with k < m,ZN+(k+1)n0 6∈ S(ZN+kn0)) ⩽ (1− ϵ1)

m.

As m tends to +∞, we have
P(∀k ∈ Z⩾0, ZN+(k+1)n0 6∈ S(ZN+kn0)) = 0.
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Hence, we have proved (5.18). Note that by (5.14), for all integers m > n > N ,
Zm(ω) ∈ S(Zn(ω)) implies Z∞(ω) ∈ A0(Zm(ω)) ⊆ AZn(ω). Hence,
(5.19) P(∃n ∈ Z⩾0, n > N,Z∞ ∈ AZn) = 1.

The claim follows immediately.
We return to the proof of Lemma 5.1. Let N1 denote the constant from Lemma 5.2.

By the claim, for a.e. ω ∈ Ω, there exists an integer N > N0 such that Z∞ ∈ AZN
. For

each integer n > N +N1, since Z∞ ∈ A0(Zn) ∩AZN
∩Ao, by applying Lemma 5.2 with

(u, v) taking the values of (Zn, o) and (o, Zn), we have
C−1

2 F (ZN , Zn) ⩽ F (o, Zn) ⩽ C2F (ZN , Zn).

It follows that for a.e. ω ∈ Ω,

lim
n→+∞

g̃n
n

= − lim
n→+∞

logF (ZN , Zn)

n
= − lim

n→+∞

logF (o, Zn)

n
= lim

n→+∞

gn
n

= lG.

The lemma is now established. □
5.3. Proof of Theorem 1.3. To obtain the dimension of the harmonic measure, we
need a lemma about the shadow on the Martin boundary of (Γ, P ). Recall that the
map Φ defined in Theorem 4.1 pushes forward the harmonic measure on the Martin
boundary to the Gromov boundary of Γ.
Lemma 5.5. Let C3 > 0 be the constant in Lemma 5.3. There is a constant 0 < C5 < 1
such that for all u ∈ Γ and
(5.20) ξ ∈ Φ−1B

(
Au, C3e

−a|u|/2
)
,

we have
K(u, ξ) ⩾ C5

( ∑
v∈N(u)

F (o, v)
)−1

.

Proof. Fix u ∈ Γ. Let N1 be the constant in Lemma 5.2. Let {wn}+∞
n=1 be a sequence

in Γ that converges to ξ in the Martin boundary. By the definition of Φ, wn converges
to Φ(ξ) in the Gromov boundary. Hence, there is an integer N > 0 such that for each
integer n > N , |wn| ⩾ |u|+ 2R +N1 and
(5.21) Awn ⊆ B

(
Φ(ξ), 2−1C3e

−a|u| − 2C6e
−a(|wn|−R)

)
,

where C6 > 0 is the constant from Corollary 3.3. Thus, we can apply (5.6) in Lemma 5.2
and (5.20), and have
(5.22) AN(wn) ⊆ B

(
Φ(ξ), C3e

−a|u|/2
)
⊆ B

(
Au, C3e

−a|u|).
Hence, wn satisfies condition (2) in Lemma 5.2. It follows from (2.4), Lemmas 3.5,
and 5.2 that

K(u,wn) = F (u,wn)/F (o, wn) ⩾
F (u,wn)∑

v∈N(u) F (o, v)F (v, wn)

⩾ F (u,wn)∑
v∈N(u) F (o, v)C2(u, v)F (u,wn)

⩾
(
min

v∈N(u)
{C2(u, v)}

∑
v∈N(u)

F (o, v)
)−1

.
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Recall that by (5.10), it follows from the local similarity, i.e., Lemma 3.4 and As-
sumption (D) in Section 1, that

C5 := min{C2(u, v) : v ∈ N(u), u ∈ Γ, |u| ⩽ N0}
= min{C2(u, v) : v ∈ N(u), u ∈ Γ}.

Hence, for each u ∈ Γ,
K(u,wn) ⩾

C5∑
v∈N(u) F (o, v)

.

As the limit of K(u,wn), therefore, K(u, ξ) also satisfies this inequality. □
Put

ϵ0 := min
P̂ (u,v)>0,|u|⩽N0

{P̂ (u, v)}.

It follows from the local similarity, i.e., Lemma 3.4 and Assumption (D) in Section 1,
that for each u, v ∈ Γ, P̂ (k)(u, v) > 0 implies

(5.23) P̂ (k)(u, v) ⩾ ϵk0.

Now we can begin the calculation of the dimension of the harmonic measure.

Proof of Theorem 1.3. Let C6 > 0, C1 > 0, C3 > 0 and C5 > 0 be the constants in
Corollary 3.3 and Lemmas 3.2 and 5.5.

We claim that there is a constant k1 ∈ Z>0 such that for each u ∈ Γ, there is a vertex
v1 = v1(u) ∈ Γ with P̂ (k1)(u, v1) > 0 such that
(5.24) B

(
A0(v1(u)), C3e

−a|u|/4
)
⊆ B

(
Au, C3e

−a|u|/2
)
.

In fact, choose k1 ∈ Z>0 such that C1e
−ak1 ⩽ C3/4. For each u ∈ Γ, there is a

vertex v1 ∈ Γ with Av1 ⊆ Au and |v1| = |u| + k1. By Assumption (C) in Section 1,
P̂ (k1)(u, v1) > 0. By Lemma 3.2,

A0(v1) ⊆ B
(
Av1 , C1e

−a|v1|
)
⊆ B

(
Au, C3e

−a|u|/4
)
.

This proves the claim.
Put

(5.25) k0 := max
{

min
w∈0(u)∩0(v)

{|w| − |u|} : u, v ∈ Γ, |u| ⩽ N0 +R, v ∈ N(u)
}
.

It follows from the local similarity of Γ, i.e., Lemma 3.4, that the condition |u| ⩽ N0+R
can be removed from the definition of k0, i.e.,
(5.26) k0 = max

{
min

w∈0(u)∩0(v)
{|w| − |u|} : u, v ∈ Γ, v ∈ N(u)

}
.

That is to say, for all u, v ∈ Γ with v ∈ N(u), there is a vertex w ∈ 0(u) ∩ 0(v)
such that |w| ⩽ |u| + k0. Moreover, by Assumption (B) in Section 1, there exists an
integer 0 ⩽ i ⩽ k0 such that P̂ (i)(u,w) > 0. Hence, there is also a vertex w′ ∈ 0(w) ⊆
0(u) ∩ 0(v) such that

(5.27) P̂ (k0)(u,w′) > 0.
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For all u, v, w ∈ Γ such that v ∈ N(u), w ∈ 0(u) ∩ 0(v), and P̂ (k0)(u,w) > 0, we
have |w| ⩽ |u| + k0R ⩽ |v| + k0R + R. Hence, by Assumption (B) in Section 1, there
exists i ∈ Z with 0 ⩽ i ⩽ k0R+R such that P̂ (i)(v, w) > 0. By the definition of F and
(5.23), for such u, v, w ∈ Γ,

(5.28) F (v, w) ⩾ P̂ (i)(v, w) ⩾ ϵi0 ⩾ ϵk0R+R
0 .

For each u ∈ Γ, choose a vertex v(u) ∈ N(u) such that

(5.29) F (o, v(u)) = sup
w∈N(u)

F (o, w).

By (5.27), there is a vertex v0(u) ∈ Γ such that P̂ (k0)(u, v0(u)) > 0 and v0(u) ∈ 0(v(u)).
Let v1(u) be chosen as in the claim.

Consider the events

Bn := {ω ∈ Ω : Zn+k0 = v0(Zn)}, n ⩾ N0,

B1
n := {ω ∈ Ω : Zn+k1 = v1(Zn)}, n ⩾ N0.

Then for each integer n ⩾ N0, by the definitions of v0 and v1, we have

P(Bn | σ(Zn)) > 0 and P
(
B1

n

∣∣ σ(Zn)
)
> 0.

By (5.23),
P(Bn | σ(Zn)) ⩾ ϵk00 and P

(
B1

n

∣∣ σ(Zn)
)
⩾ ϵk10 .

Hence, by the Markov property,

(5.30) P(Bn ∩B1
n+k0

| σ(Zn)) ⩾ ϵk0+k1
0 .

By the assumption (B) in Section 1, for each sample path {Zn(ω)}n∈Z⩾0
and each

pair of vertices w1, w2 ∈ Γ on the same level, (i.e., |w1| = |w2|), if Zn(ω) = w1 for some
n ∈ Z⩾0, then Zn′(ω) = w2 cannot hold for all n′ ∈ Z⩾0. Hence, for each w, v ∈ Γ, by
the definition (3.2) of N(·),

(5.31)
∑

w′∈N(v)

F (w,w′) ⩽
|v|+R∑

k=|v|−R

∑
v∈N(w′),|w′|=v

F (w,w′) ⩽
|v|+R∑

k=|v|−R

1 = 2R + 1.

Hence, for each integer n ⩾ N0, each ω ∈ B1
n+k0

, and each ξ ∈ B
(
Z∞, C3e

−a|Zn+k0
|/4

)
,

by (5.31) and Lemmas 5.5 and 3.5,

K(Zn+k0 , ξ)
−1 ⩽ C−1

5

∑
w∈N(Zn+k0

)

F (o, w)

≲
∑

w∈N(Zn)

∑
w′∈N(Zn+k0

)

F (o, w)F (w,w′)(5.32)

≲
∑

w∈N(Zn)

F (o, w).
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For each integer n ⩾ N0 and each ω ∈ Bn, by Lemma 3.5, (5.29), and (5.28),∑
w∈N(Zn)

F (o, w) ⩽ (#N(Zn))F (o, v(Zn))

⩽ #N(Zn)

F (v(Zn), Zn+k0)
F (o, Zn+k0) ⩽

#N(Zn)

ϵk0R+R
0

F (o, Zn+k0).

Combining the inequality above with (5.32), we deduce that, for all integer n ⩾ N0,
ω ∈ Bn ∩ B1

n+k0
, and ξ ∈ Φ−1

(
B
(
Z∞(ω), C3e

−a|Zn+k0
|/4

))
,

(5.33) K(Zn+k0 , ξ) ≳ F (o, Zn+k0)
−1.

Recall that ν = Φ∗ν
∂MΓ is the push-forward of the harmonic measure from the Martin

boundary to X by the map Φ provided in Theorem 4.1. Recall the formula (2.8) about
the change of basepoint of the harmonic measure:

K(u, ·) = dν∂MΓ
u

dν∂MΓ
.

For each integer n ⩾ N0 and each sample path ω ∈ Bn ∩ B1
n+k0

, put u := Zn(ω). Then
by (5.33), with Rn,ω := C3e

−a|Zn+k0
|/4, we have

(5.34) 1 =

∫
∂MΓ

dν∂MΓ
u (ξ) ⩾

∫
Φ−1B(Z∞,Rn,ω)

K(u, ξ) dν∂MΓ(ξ) ≳ ν(B(Z∞, Rn,ω))

F (o, Zn+k0)
.

By (5.30) and inductively by the Markov property,

P
(
∀0 ⩽ m ⩽ n, ω 6∈ Bm(k0+k1) ∩B1

m(k0+k1)+k0

)
⩽

(
1− ϵk0+k1

0

)n
.

Letting n → +∞, we get

P
(
Bm ∩ B1

m+k0
i.o.

)
= lim

n→+∞
P
( ∞⋃

m=n

Bm ∩ B1
m+k0

)
= 1.

That is, ω ∈ Bn ∩ B1
n+k0

infinitely often for a.e. ω ∈ Ω.
Hence, for a.e. ω ∈ Ω, there is an infinite sequence {ni}i∈Z>0 such that ω ∈ Bni

∩
B1

ni+k0
. Thus, for a.e. ω ∈ Ω, by (5.34) and Lemma 5.1,

(5.35) lim
i→+∞

− log(ν(B(Z∞, Rni,ω)))

ni

⩾ lim
i→+∞

− logF (o, Zni+k0)

ni

= lG.

Conversely, by Corollary 3.3, if ξ ∈ Φ−1A0(u), then A0(u) ⊆ B
(
ξ, C6e

−a|u|). Thus,

ν
(
B
(
ξ, C6e

−a|u|)) ⩾ ν(A0(u)) = ν∂MΓ
(
Φ−1A0(u)

)
=

∫
K(u, ξ)−1 dν∂MΓ

u (ξ) ⩾ F (o, u).

Combine with Lemma 5.1, we have, for a.e. ω ∈ Ω,

(5.36) lim sup
n→+∞

− log
(
ν
(
B
(
Z∞, C6e

−a|Zn|
)))

n
⩽ lim

n→+∞

− log(F (o, Zn))

n
= lG.
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Since ν is the projection of the probability measure P by the measurable function
Z∞, for ν-a.e. ξ ∈ X, we can find ω ∈ Ω such that ω ∈ Bn∩B1

n+k0
, i.o., and Z∞(ω) = ξ.

Hence, combining (5.36) with (5.35), for ν-a.e. ξ ∈ X, choosing such ω, we have

lim sup
n→+∞

− log
(
ν
(
B
(
Z∞, e−a|Zn|

)))
n

= lG.

Recall that lim
n→+∞

|Zn|
n

= l. So we have

lim sup
r→0

log ν(B(ξ, r))

log r
=

lG
al
.

It follows by the properties of fractal dimensions (see for example, [PU10, Theorem 8.6.5
and the last paragraph in Subsection 8.4]) that the packing dimension of ν is lG

al
. This

completes the proof of Theorem 1.3. □

6. Quasi-invariance of the harmonic measure

In this section, we aim to establish the quasi-invariance of the harmonic measure in
Theorem 1.5. Throughout this section, we assume that the dynamical system (X, f)
satisfies the Assumptions in Subsection 2.1. Let Γ be the tile graph associated with
f and a fixed Markov partition α with each A ∈ α connected so that Theorem 2.3
can be applied. The tile graph Γ is equipped with a natural shift map σ defined in
Subsection 2.3. We focus on some basic properties of the random walks on the tile
graph Γ under the Assumptions in Section 1.

For each u ∈ Γ, put νu := Φ∗ν
∂MΓ
u . Then we have the following lemmas.

Lemma 6.1. For each vertex u ∈ Γ,

νu =
∑
w∈Γ

P̂ (u,w)νw.

Proof. For each sample path ω ∈ Ω, we denote by ZX
∞(ω) the limit of {Zn(ω)} in X.

For each u ∈ Γ, by the definition (2.7) of ν∂MΓ
u and the definition of Φ in Theorem 1.1,

for each Borel subset A ⊆ X,
νu(A) = Pu(Z

X
∞ ∈ A).

Hence, for each u ∈ Γ,

□(6.1) νu =
∑
w∈Γ

P̂ (u,w)νw.

Lemma 6.2. For each vertex u ∈ Γ with u 6= o, we have
(6.2) νσu = f∗νu.

Proof. By the definition (2.7) of ν∂MΓ
u and the definition of Φ in Theorem 1.1, for each

Borel subset A ⊆ X,
(6.3) νu(A) = Pu(Z

X
∞ ∈ A).
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Let N0 ∈ Z>0 be the constant from Lemma 3.4. Fix u ∈ Γ with |u| ⩾ N0. By
Assumption (D) in Section 1 and Lemma 3.4, for each cylinder [u0, . . . , un] ⊆ Ω with
n ∈ Z>0 and u0 = u, . . . , un ∈ Γ, we have

Pu([u0, . . . , un]) = P̂ (u0, u1) · · · P̂ (un−1, un)

= P̂ (σu0, σu1) · · · P̂ (σun−1, σun)

= Pσu([σu0, . . . , σun]).

For each ω ∈ Ω, we define σ∗ω as the sample path satisfying Zn(σ∗ω) = σZn(ω) for
each n ∈ Z⩾0. Hence, for each measurable subset A ⊆ Ω,

Pσu(A) = Pu(σ∗ω ∈ A).

By Corollary A.5 and the definition of σ∗, ZX
∞(σ∗ω) = f(ZX

∞(ω)). Hence, for each Borel
subset B ⊆ X,

Pσu(Z
X
∞ ∈ B) = Pu(Z

X
∞(σ∗ω) ∈ B).

By (6.3), for each Borel subset B ⊆ X,

νσu(B) = Pσu(Z
X
∞(ω) ∈ B) = Pu(fZ

X
∞(ω) ∈ B) = νu(f

−1B) = (f∗νu)(B).

That is, νσu = f∗νu for all u ∈ Γ with |u| ⩾ N0.
For u ∈ Γ with |u| ⩽ N0, we prove (6.2) by induction. Suppose that for some

integer n > 0, (6.2) holds for each u ∈ Γ with |u| > n. Fix u ∈ Γ with |u| = n. By
Assumption (B) in Section 1 and the inductive hypothesis, (6.2) holds for all w′ ∈ Γ

with P̂ (u,w′) > 0. By Lemma 6.1,

νσu =
∑
w∈Γ

P̂ (σu, w)νw

=
∑

w,w′∈Γ,σw′=w

P̂ (u,w′)νw

=
∑
w′∈Γ

P̂ (u,w′)νσw′

=
∑
w′∈Γ

P̂ (u,w′)f∗νw′

= f∗νu.

Therefore, (6.2) holds for all u ∈ Γ with u 6= o. □

Proof of Theorem 1.5. By Lemmas 6.1 and 6.2,

(6.4) f∗ν =
∑

w∈Γ,|w|=1

P̂ (o, w)ν +
∑

w∈Γ,|w|>1

P̂ (o, w)νσw.
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By Assumption (C) on Section 1, for each w ∈ Γ with |w| = 1, P̂ (o, w) > 0. Hence, ν
is absolutely continuous to f∗ν with Radon-Nikodym derivative

dν

d(f∗ν)
<

( ∑
w∈Γ,|w|=1

P̂ (o, w)
)−1

.

Conversely, by induction on Lemma 6.1, for each n ∈ Z>0, we have

ν =
∑
w∈Γ

P̂ (n)(o, w)νw.

By Assumption (C) in Section 1, for each w ∈ Γ, P̂ (|w|)(o, w) > 0. It follows that
P̂ (|w|)(o, w)νw is a summand of the right side of the equality. Hence, νw is absolutely
continuous to ν with dνw

dν
< P̂ (w)(o, w)−1. Therefore, by (6.4), as the sum of some νw’s,

f∗ν is absolutely continuous to ν with Radon-Nikodym derivative

d(f∗ν)

dν
<

∑
w∈Γ,P̂ (o,w)>0

P̂ (o, w)P̂ (|σw|)(o, σw)−1.

The theorem follows. □

Appendix A. The tile graph and visual metrics

The main goal of this appendix is to prove Propositions A.3. The proof mainly
follows the ideas in [HP09, Chapter 3] and [BM17, Chapters 8 and 10].

Fix a dynamical system (X, f) satisfying the Assumptions in Subsection 2.1 with a
Markov partition α such that meshα < ξ. Recall that the tile graph Γ is defined in
Subsection 2.3, and each vertex u ∈ Γ associates with a subset Au ⊆ X.

We start with the given metric ρ on X, which may not be a visual metric as recalled
in Subsection 2.3.

Lemma A.1. Let (X, f) be a dynamical system satisfying the Assumptions in Sub-
section 2.1 with a Markov partition α such that meshα < ξ. Let Γ be the tile graph
associated with α. Then for each u ∈ Γ with |u| ⩾ 1,

diamAu < λ−|u|+1ξ.

Proof. We prove it by induction on n = |u| ∈ Z>0. The statement is true for n = 1
since meshα < ξ. For n > 1, we assume that if |u| = n − 1, then diamAu < λ−n+2ξ.
We consider u = u1 . . . un ∈ Γ with |u| = n. Then fAu = Aσu and |σu| = n− 1. Hence,
by the inductive hypothesis, diam fAu < λ−n+2ξ. Since Au ⊆ Au1 , diamAu < ξ. By
Assumption (iii) in Subsection 2.1, for all x, y ∈ Au,

ρ(x, y) < λ−1ρ(fx, fy) < λ−1 diam fA < λ−1 meshαn−1 < λ−n+1ξ.

Therefore, diamAu < λ−n+1ξ. This finishes the inductive argument. □
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We use the boundary construction of W. Floyd [Flo80] to prove Propositions A.3 as
in [HP09, Chapter 3]. Fixing some constant a > 0, we define a metric ρ̃ : Γ× Γ → R⩾0

as follows.
For each set of integers J = I ∩ Z with I ⊆ R being an interval, we call γ : J → Γ a

path in Γ if for each i ∈ J such that i + 1 ∈ J , γ(i) and γ(i + 1) are connected by an
edge. If I is a finite interval, then we say that γ connects γ(inf J) and γ(sup J).

Then we denote the length of a path γ : J → Γ by

l(γ) :=
∑

j,j+1∈J

e−amax{|γ(j)|,|γ(j+1)|}.

We construct a metric ρ̃ on Γ by
(A.1) ρ̃(x, y) := inf{l(γ) : γ is a path in Γ connecting x, y},
for x, y ∈ Γ. It is easy to verify that ρ̃ is a metric on Γ. Let Γ ∪ ∂ρ̃Γ be the metric
completion of Γ with respect to ρ̃. We aim to show that, for sufficiently small a > 0,
∂ρ̃Γ is homeomorphic to X.

Remark A.2. Although by our definition, (Γ, ρ̃) is not a geodesic metric space, we can
still construct a geodesic metric space rough-isometric to it if we need to. In fact, we
can add the edges to the vertex set of Γ to make it a 1-complex. Then we set the length
of each edge e = {u, v} by l(e) := e−amax{|u|,|v|}. Then we can verify that the resulting
space is geodesic and (1, C)-quasi-isometric to (Γ, ρ̃). This construction is exactly the
construction of the Floyd boundary for the function f(n) = e−an.

If I = (s, t) is not a finite interval, then we denote γ(−∞) := lim
n→−∞

γ(n) if s = −∞
and the limit exists. We also denote γ(+∞) := lim

n→+∞
γ(n) if t = +∞ and the limit

exists. By this way, we also say that γ connects γ(inf(I ∩ Z)) and γ(sup(I ∩ Z)).
Here is the statement of the main result of the appendix. As an analog of [BM17,

Theorem 10.1] and [HP09, Proposition 3.3.9], it proves the hyperbolicity of the tile
graph. It also shows the existence of a-visual metrics for all sufficiently small a > 0.

Proposition A.3. Let (X, f) be a dynamical system satisfying the Assumptions in
Subsection 2.1 with a Markov partition α such that meshα < ξ. Then the tile graph
Γ defined in Subsection 2.3 is Gromov hyperbolic, and the Gromov boundary of Γ is
naturally homeomorphic to X. Moreover, there is a constant a0 such that for each
a ∈ (0, a0), ρ̃ is an a-visual metric, and, if ρ is an a-visual metric, then ρ � ρ̃.

To prove Proposition A.3 at the end of the appendix, we need more preparations.
First, we prove that the ρ̃-boundary coincides with X.

Proposition A.4. Let (X, f) be a dynamical system with constants λ and ξ satisfying
the Assumptions in Subsection 2.1. Let α be a Markov partition with meshα < ξ. Let
Γ be the tile graph associated with (X, f) and α defined in Subsection 2.3. Suppose
that 0 < a < log λ and ρ̃ is a metric on Γ defined in (A.1). Then ∂ρ̃Γ is naturally
homeomorphic to X by a map Ψ. Moreover, for all ζ, η ∈ X,
(A.2) ρ(Ψζ,Ψη) ≲ ρ̃(ζ, η).



40 ZHIQIANG LI AND RUICEN QIU

By naturally homeomorphic we mean that the homeomorphism Ψ from the ∂ρ̃Γ to X
satisfies the following property: for every sequence of vertices {un}n∈Z>0 in Γ converging
to ζ ∈ ∂ρ̃Γ, the corresponding sequence of subsets {Aun}n∈Z>0 converges in the sense of
Gromov–Hausdorff convergence to a singleton {Ψ(ζ)} ⊆ X.

Proof. First, we define the map Ψ as follows. For each ζ ∈ ∂ρ̃Γ, choose a sequence of
vertices {un}n∈Z>0 in Γ converging to ζ. Then it follows from the definition (A.1) of ρ̃
that lim

n→+∞
|un| = +∞. Hence, by Lemma A.1, diamAun → 0. By the compactness of X,

there is a subsequence of Aun Gromov–Hausdorff converging to a singleton {x} ⊆ X.
We define Ψ(ζ) := x and the well-definedness follows from the following claim with
ζ = η.

Claim. Suppose that {vn}n∈Z>0 and {wn}n∈Z>0 are two sequences in Γ converging to
ζ, η ∈ ∂ρ̃Γ, respectively, such that {Avn}n∈Z>0 Gromov–Hausdorff converges to {x} ⊆ X
and {Awn}n∈Z>0 Gromov–Hausdorff converges to {y} ⊆ X, then ρ(x, y) ≲ ρ̃(ζ, η).

Indeed, without the loss of generality, we may assume that x 6= y. For each n ∈ Z>0

and each path γ : {0, · · · , k} → Γ connecting wn and vn, since a < log λ, by Lemma A.1,
(A.3)

l(γ) =
∑

i∈{0,...,k−1}

e−amax{|γ(i)|,|γ(i+1)|} ≳
k∑

i=0

e−a|γ(i)| ⩾
k∑

i=0

λ−|γ(i)| ≳
k∑

i=0

diamAγ(i).

Since γ(i) and γ(i + 1) are connected by an edge of Γ, for each i ∈ {0, · · · , k − 1},
Aγ(i) ∩ Aγ(i+1) 6= ∅. It follows that

(A.4) ρ(Avn , Awn) ⩽
k−1∑
i=1

diamAγ(i).

Recall that {Avn} and {Awn} Gromov–Hausdorff converge to {x} and {y}, respectively.
Let n → +∞. It follows from (A.3), (A.4), and the definition (A.1) of ρ̃ that ρ(x, y) ≲
ρ̃(ζ, η). The claim follows.

By the claim, the map Ψ we have just defined is continuous, and (A.2) holds. Note
that Γ is locally compact. Hence, ∂ρ̃Γ is compact. Since a continuous bijection between
compact Hausdorff spaces is a homeomorphism, it suffices to prove that, Ψ is a bijection.

To prove the surjectivity, we consider an arbitrary point x ∈ X. For each n ∈ Z>0,
choose un ∈ Γ such that x ∈ Aun . Then it is easy to verify that {un}n∈Z>0 is a ρ̃-Cauchy
sequence whose limit point maps to x by Ψ. Hence, Ψ is surjective.

To prove the injectivity, we assume that {vn}n∈Z>0 is a sequence in Γ converging
to η ∈ ∂ρ̃Γ such that Avn Gromov–Hausdorff converges to {x} ⊆ X. Then for each
N ∈ Z>0, there exists an integer M > 0 such that for each integer m > M ,

(A.5) Avm ⊆
⋃

v∈Γ,x∈Av ,|v|=N

Av,

since the interior of the latter set contains x. For each n ∈ Z>0, choose un ∈ Γ such
that |un| = n and x ∈ Aun . It is easy to verify that {un}n∈Z>0 is a ρ̃-Cauchy sequence
whose limit point maps to x by Ψ. We denote the limit of {un} by ζ ∈ ∂ρ̃Γ.
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It suffices to show that ζ = η. For each integer N > 0, choose an integer M > 0 such
that (A.5) holds for each integer m > M . For each integer m > M , we choose a point
z ∈ Avm and choose for each integer N ⩽ k ⩽ m a vertex wk such that |wk| = k and
z ∈ Awk

. In particular, by (A.5), we can assume that x ∈ AwN
and wm = vm. Then

the sequence vm = wm, wm−1, . . . , wN , un, un+1, . . . , produces a path in Γ connecting vm
and ζ. Hence, by the definition (A.1) of ρ̃,

ρ̃(vm, ζ) ⩽
∑

N⩽i<m

e−a(i+1) + e−aN +
∑
i⩾N

e−a(i+1) <
2e−aN

1− e−a
.

As N → +∞, we have lim
m→+∞

ρ̃(vm, ζ) = 0. Hence, as the limit of {vn}n∈Z>0 , η = ζ.
The injectivity follows. □

By Proposition A.4, we identify X with ∂ρ̃Γ and regard the metric ρ̃ as defined on
X. By the naturality of the identification, if a sequence {un} in Γ converges to x ∈ X,
then Aσun = fAun Gromov–Hausdorff converges to {fx}. Hence, {σun} converges to
fx, which establishes the following corollary:
Corollary A.5. Let (X, f), α, Γ, and a be from Proposition A.4. Then under the
identification in Proposition A.4, the map σ : Γ → Γ extends to f on the boundary
∂ρ̃Γ ∼= X.

Roughly speaking, the following proposition says that when X is equipped with the
metric ρ̃, f is locally a similarity.
Proposition A.6. Let (X, f), α, Γ, a, ξ, and λ satisfy the assumptions in Propo-
sition A.4. Let ρ̃ be the metric defined in (A.1) but regarded as on X under the
identification in Proposition A.4. Then there is a constant ξ′ > 0 such that for all
x, y ∈ X with ρ̃(x, y) < ξ′, we have ρ̃(fx, fy) = eaρ̃(x, y).
Proof. Let C = C(≲) be the constant in (A.2). Put
(A.6) ξ′ := min

{
e−2a, ξ/(2C)

}
.

Fix x, y ∈ X such that ρ̃(x, y) < ξ′. For each ϵ > 0, by the definition (A.1) of ρ̃, we
can choose γ : Z → Γ be a path connecting x and y such that
(A.7) ρ̃(x, y) + ϵ > l(γ) =

∑
i∈Z

e−amax{|γ(i)|,|γ(i+1)|}.

Consider σ∗γ : i ∈ Z 7→ σγ(i) ∈ Γ. By Corollary A.5, it connects fx and fy. By the
definition (A.1) of ρ̃,

ρ̃(fx, fy) ⩽ l(σ∗γ)

=
∑
i∈Z

e−amax{|σ∗γ(i)|,|σ∗γ(i+1)|}

= ea
∑
i∈Z

e−amax{|γ(i)|,|γ(i+1)|}

= eal(γ)

< ea(ρ̃(x, y) + ϵ).
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Letting ϵ → 0, we have
(A.8) ρ̃(fx, fy) ⩽ eaρ̃(x, y).

For the converse inequality, for each ϵ > 0 such that
ϵ < ξ′ − ρ̃(x, y),

by (A.8) and (A.6),
(A.9) ϵ < e−2a − ρ̃(x, y) ⩽ e−a(e−a − ρ̃(fx, fy)).

By the definition (A.1) of ρ̃, we can choose γ : Z → Γ as a path connecting fx and fy
such that
(A.10) l(γ) < ρ̃(fx, fy) + ϵ.

Then by (A.9),
l(γ) < e−a.

Hence, it is easy to show by the definition (A.1) of ρ̃ that the image of γ avoids o. We
can choose a path γ′ as a lift of γ by σ−1 starting from x which connects x with some
point y′ ∈ X. Then fy′ = fy and l(γ) = eal(γ′). By the definition (A.1) of ρ̃, (A.8),
and (A.10)
(A.11) ρ̃(x, y′) ⩽ l(γ′) = e−al(γ) < e−a(ρ̃(fx, fy) + ϵ).

Recall that ρ̃(x, y) < ξ′ − ϵ. By (A.8) and (A.11),
ρ̃(y, y′) ⩽ ρ̃(x, y) + ρ̃(x, y′) ⩽ 2ρ̃(x, y) + e−aϵ < 2ξ′.

By Proposition A.4 and (A.6),
ρ(y, y′) ⩽ 2Cξ′ ⩽ ξ.

It follows from Assumption (iii) in Subsection 2.1 that fy′ = fy implies y′ = y. By
(A.11)

ρ̃(x, y) = ρ̃(x, y′) < e−a(ρ̃(fx, fy) + ϵ).

As ϵ → 0, we have ρ̃(fx, fy) ⩾ eaρ̃(x, y). Combining the inequality above with (A.8),
the proposition follows. □

As an immediate corollary, the dynamical system f on the metric space (X, ρ̃) is
expanding as well as on the original metric space (X, ρ).

Corollary A.7. Under the notations and the assumptions in Proposition A.6. Equipped
with the metric ρ̃ instead of the given metric ρ, (X, f) satisfies the Assumptions in
Subsection 2.1 with some constants ξ and λ.

Proof. Assumptions (i) and (ii) are only related to the topology induced by ρ̃, and hence
are both satisfied due to the homeomorphism in Proposition A.4. Assumption (iii) can
be easily verified by Proposition A.6 with λ := ea and ξ := ξ′. □

The next proposition follows the ideas of [HP09, Proposition 3.3.2] and [BM17,
Lemma 8.11]. In general, it shows that equipped with the metric ρ, tiles are uniformly
“quasi-round”, that is, every tile contains points that are “deep inside” the tile.
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Proposition A.8. Under the notations and the assumptions in Proposition A.6, there
is a constant C0 > 1 such that, for each u ∈ Γ, there is a point x ∈ Au so that

Bρ̃

(
x,C−1

0 e−a|u|) ⊆ Au ⊆ Bρ̃

(
x,C0e

−a|u|).
Proof. By the definition of Markov partitions, for each A ∈ α, intA 6= ∅. Hence, we
can choose η(A) ∈ intA and r(A) ∈ (0,+∞) for each A ∈ α such that r(A) < ξ′ and

Bρ̃(η(A), r(A)) ⊆ intA.

Put C := 1/min{r(A) : A ∈ α}. Then for each u ∈ Γ, since (f |u|−1)|Au : Au → Aσ|u|−1u

is a homeomorphism and A := Aσ|u|−1u ∈ α, we can choose η := ((f |u|−1)|Au)
−1(η(A))

and r := e−a(|u|−1)r(A). Applying Proposition A.6 inductively, it is easy to show that
Bρ̃(η, r) = ((f |u|−1)|Au)

−1(Bρ̃(η(A), r(A))) ⊆ Au.
The remaining part of the proposition follows immediately from Corollary A.7 and

Lemma A.1. □
To prove the hyperbolicity of the tile graph Γ, we introduce a concept called flowers

from [BM17, Section 5.6]. Generally speaking, for each pair u, v ∈ Γ, we aim to compare
the ρ̃-distance between u and v with the Gromov product 〈u, v〉o. We construct a flower
W (w) at the level of 〈u, v〉o and then construct a path by connecting u,w and w, v that
reaches the ρ̃-distance between u and v.

Definition A.9. For u ∈ Γ, the flower of u is defined as
(A.12) W (u) = {v ∈ Γ : |v| = |u|, Au ∩ Av 6= ∅}.

So, it is the set of all the tiles intersecting with u and at the same level as u. It
follows that AW (u) contains a neighborhood of Au, i.e.,
(A.13) intAW (u) ⊇ Au.

Lemma A.10. Under the notations and the assumptions in Proposition A.6, there is
a constant r0 > 1 such that, for each point x ∈ X, if u ∈ Γ is a tile such that x ∈ Au,
then

Bρ̃

(
x, r0e

−a|u|) ⊆ AW (u).

Proof. By Lemma A.1, there is an integer N > 0 such that for each u ∈ Γ with |u| > N ,
we have 3 diamρ̃ Au < ξ′. It follows from (A.12) that for each u ∈ Γ with |u| > N ,
(A.14) diamρ̃ AW (u) < ξ′.

For each u ∈ Γ with |u| ⩽ N , by (A.13), we can choose r(u) > 0 such that intAW (u) ⊇
Bρ̃(Au, r(u)). Choose r0 := min

u∈Γ,|u|⩽N
r(u)ea|u| > 0. Then for each u ∈ Γ with |u| ⩽ N ,

(A.15) intAW (u) ⊇ Bρ̃

(
Au, r0e

−a|u|).
For a general tile u ∈ Γ and a point x ∈ Au, choose n := max{|u| − N, 0}. By

(A.14), fn|AW (u)
is a homeomorphism to its image AW (σnu). By (A.14) and an inductive

argument on Proposition A.6,
fnBρ̃

(
Au, r0e

−a|u|) = Bρ̃

(
Aσnu, r0e

−a(|u|−n)
)
⊆ intAW (σnu) = fnAW (u).
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Therefore, AW (u) ⊇ Bρ̃

(
x, r0e

−a|u|).
□

Recall that the tile graph is equipped with a combinatorial metric d and the Gromov
product with respect to the basepoint o is given in (2.10) by

(A.16) 〈u, v〉o :=
1

2
(|u|+ |v| − d(u, v)).

The next lemma is the key lemma to prove the hyperbolicity of the tile graph.

Lemma A.11. Under the notations and the assumptions in Proposition A.6, for all
u, v ∈ Γ,

(A.17) diamρ̃(Au ∪ Av) � e−a⟨u,v⟩o .

Proof. For one side of the inequality, we fix u, v ∈ Γ and assume that γ : {0, . . . , n} → Γ
is a d-geodesic connecting u and v. Then n = d(u, v). Choose k := b(n+ |u| − |v|)/2c.
Then by (A.16),

e−a(|u|−k) � e−a⟨u,v⟩o � e−a(|v|−(n−k)).

By the definition (A.1) of ρ̃, since |γ(i)| ⩾ max{|u| − i, |v| − (n− i)},

ρ̃(u, v) ⩽ l(γ)

=
∑

i∈{0,...,n−1}

e−amax{|γ(i),|(|γ(i+1))|}

⩽
k∑

i=0

e−a(|u|−i) +
n−k−1∑
i=0

e−a(|v|−i)

≲ e−a(|u|−k) + e−a(|v|−(n−k−1))

≲ e−a⟨u,v⟩o .

It is easy to show that for all η ∈ Au, ρ̃(u, η) ⩽
+∞∑
i=|u|

e−ai ≲ e−a|u| ⩽ e−a⟨u,v⟩o . It follows

that

(A.18) diamρ̃(Au ∪ Av) ⩽ ρ̃(u, v) + 2 sup
η∈Au

ρ̃(u, η) + 2 sup
η∈Av

ρ̃(v, η) ≲ e−a⟨u,v⟩o .

For the other side of the inequality, we choose the constant r0 > 1 in Lemma A.10.
Fix a pair of vertices u, v ∈ Γ and arbitrarily choose x ∈ Au and y ∈ Av. We choose

n := min
{
b−a−1 log(ρ̃(x, y)/r0)c, |u|, |v|

}
.

Then we have

(A.19) r0e
−an > ρ̃(x, y).

It follows from Lemma A.10 that for each vertex w ∈ Γ with |w| = n and x ∈ Aw,
there is a vertex w′ ∈ Γ with |w′| = n and y ∈ Aw′ such that Aw ∩ Aw′ 6= ∅. Recall the
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definition of the edges of the tile graph Γ. It follows from x ∈ Aw ∩ Au, y ∈ Aw′ ∩ Av,
and n ⩽ min{|u|, |v|} that d(u,w) = |u| − n and d(v, w′) = |v| − n. Therefore,

〈u, v〉o =
1

2
(|u|+ |v| − d(u, v)) =

1

2
(2n+ d(u,w) + d(w′, v)− d(u, v)) ⩾ 2n− 1

2
.

Combining the inequality above with (A.19), we can prove that ρ̃(x, y) ≲ e−a⟨u,v⟩o .
Therefore, the lemma follows. □

Now we can give a proof of Proposition A.3.

Proof of Proposition A.3. By Lemma A.11, for all u, v, w ∈ Γ, we have
e−a⟨u,v⟩o � diamρ̃(Au ∪ Av)

⩽ diamρ̃(Au ∪ Aw) + diamρ̃(Aw ∪ Av)

� e−a⟨u,w⟩o + e−a⟨w,v⟩o

� max{e−a⟨u,w⟩o + e−a⟨w,v⟩o}.
Hence, there is a constant δ > 0 such that

〈u, v〉o ⩾ min
{
〈u,w〉o, 〈w, v〉o

}
− δ.

That is, Γ is Gromov hyperbolic.
Since X is Gromov hyperbolic, then, for each a > 0 small enough, ∂ρ̃Γ coincides

with the Gromov boundary of Γ and ρ̃|∂ρ̃Γ is a visual metric (see for example, [BHK01,
Chapter 4]). Therefore, by the definition of visual metrics, ρ̃|∂ρ̃Γ � ρ, and, by Proposi-
tion A.4, the Gromov boundary of Γ is naturally homeomorphic to X. □
Corollary A.12. Let (X, f), α, Γ, and a0 be from Proposition A.3. Let ρ be an a-visual
metric on X for some 0 < a < a0. Then there is some constant C0 > 1 such that, for
all u, v ∈ Γ, there is a point x ∈ Au such that

Bρ

(
x,C−1

0 e−a|u|) ⊆ Au ⊆ Bρ

(
x,C0e

−a|u|),
C−1

0 e−a⟨u,v⟩o ⩽ diamρ(Au ∪ Av) ⩽ C0e
−a⟨u,v⟩o .

Proof. By Proposition A.3, ∂ρ̃Γ coincides with the Gromov boundary of Γ and ρ̃|∂ρ̃Γ � ρ.
Hence, Proposition A.8 and Lemma A.11 can be applied to ρ, and the corollary follows
immediately. □

The following result for visual metrics is a stronger version of Assumption (iii) in
Subsection 2.1. Since we do not care about the exact value of ξ > 0, we use the same
notation ξ as in Subsection 2.1.

Corollary A.13. Let (X, f), α, Γ, and a0 be from Proposition A.3. Let ρ be an a-visual
metric on X for some 0 < a < a0. Then there is a constant ξ > 0 such that for all
x, y ∈ X and n ∈ Z>0 satisfying that ρ

(
fkx, fky

)
< ξ for each integer 0 ⩽ k < n, we

have
(A.20) ρ(fnx, fny) � eanρ(x, y).

Moreover, for each x ∈ X, f |B(x,ξ) is a homeomorphism to its image.
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Proof. By Proposition A.3, ρ � ρ̃. Choose the constant C = C(�) and put ξ := ξ′/C,
where ξ′ is from Proposition A.6. Then (A.20) follows from Proposition A.6 by an
inductive argument. Moreover, (A.20) implies that for all x, y ∈ X with ρ(x, y) < ξ,

ρ(fx, fy) � ρ(x, y).

Therefore, f |B(x,ξ) is a Lipschitz homeomorphism to its image. □
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